• エルボ・ベンド管用部材『スーパーエルボ』<導入実績付き資料進呈> 製品画像

    エルボ・ベンド管用部材『スーパーエルボ』<導入実績付き資料進呈>

    PR摩耗や閉塞のトラブルを減少させ、メンテコストを削減。既存システムを変更…

    『スーパーエルボ』は、配管コーナー部に設置することで、 空気輸送における摩耗・閉塞・粒子変形などの問題を防げる配管部材です。 出入口の間に設けた窪み内で空気と粉体粒子が緩やかに回転することにより 管壁への輸送物の衝突を抑制でき、配管の長寿命化を実現。 取付寸法が小さく、省スペースに設置が可能です。 当社は他にも、粉体や粒体等を水平・垂直・傾斜など 様々な方向に輸送できる「チュー...

    • s1.jpeg
    • s2.jpeg

    メーカー・取り扱い企業: 株式会社山本工作所

  • 【エコで安全!】ノンフロン汎用機器ソリューションのご紹介 製品画像

    【エコで安全!】ノンフロン汎用機器ソリューションのご紹介

    PRエコなノンフロン汎用機器へ更新しませんか?※「ノンフロンソリューション…

    サーモフィッシャーサイエンティフィックでは、 環境に配慮して冷却機能がついた機器のノンフロン化を推進しています。 オゾン層を破壊せず、地球温暖化を促さないノンフロン冷媒を使用した機器や、ペルチェ冷却機能を搭載し、 より安全なノンコンプレッサー仕様の汎用機器製品群をご紹介します。各製品の機器更新の際に、ぜひご検討ください。 ※仕様詳細はPDFをダウンロードしてご覧ください。詳しくはお気軽にご相談...

    メーカー・取り扱い企業: サーモフィッシャーサイエンティフィック株式会社/Thermo Fisher Scientific K.K.

  • 東北大学技術:Li4Ti5O12-カーボン複合体:T15-104 製品画像

    東北大学技術:Li4Ti5O12-カーボン複合体:T15-104

    マイクロ波を用いて安価に、Li4Ti5O12-カーボン複合体を製造可能…

    近年、セラミックスとカーボンを組み合わせて複合化することにより、高機能かつ多機能のセラミックス-カーボン複合体が開発されている。しかしながら、製造過程で長時間高温の加熱を行うため、粒子同士が焼結してしまい、高出力化が可能なL...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:2Dカーボンマイクロラティス:T21-316 製品画像

    東北大学技術:2Dカーボンマイクロラティス:T21-316

    形状自由度が高く、フレキシブルな炭素材料

    形3Dプリンターは、光硬化性樹脂を用いて様々な3次元マイクロ格子構造(3Dマイクロラティス)を成形できる。これを不活性雰囲気中で熱処理すると、元の形状を保ったまま60~80%収縮して炭素化し、3Dカーボンマイクロラティスを得ることができる。[1][2] 3Dカーボンマイクロラティスは軽量で高強度だが、炭素繊維のように柔軟に変形することは難しい。マイクロ構造炭素材料をより広く応用するため、本発明で...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 【東北大学技術】カーボンナノチューブ触媒・組成物・製造方法 製品画像

    【東北大学技術】カーボンナノチューブ触媒・組成物・製造方法

    高純度カイラリティのCNTを低コストで生産!CNT組成物サンプルを提供…

    カーボンナノチューブ(CNT)は、炭素六員環から構成されるグラフェン シートを円筒状に巻いた構造の物質です。 CNTでは、グラフェンの軸方向の巻き方(カイラリティ)により、金属性、 半導体性、さらにバンドギャップ(BG)等の電子状態が決定されることが 知られています。 本発明は、カイラリティ純度を高めるための行程が不要で、製造コストが低く、 簡便な、カイラリティ純度の極めて高い(90...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:導電材並びにその電極および蓄電装置:T19-065 製品画像

    東北大学技術:導電材並びにその電極および蓄電装置:T19-065

    大きい比表面積と高い導電性をバランス良く兼ね備えることが可能

    近年、環境に対する負荷や安全性などの観点から、有機材料を用いた二次電池の開発が進められている。このようなデバイスでは、電極材料として大きい比表面積や高い導電性を有する活性炭やハードカーボンなどが使用されている。しかし、活性炭は非常に大きい比表面積を有しているものの、導電率が小さいという課題があった。さらに、石油コークスを原料として製造されているため、環境負荷が大きい。また、ハードカ...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:窒化アルミニウム系粒子:T18-355 製品画像

    東北大学技術:窒化アルミニウム系粒子:T18-355

    製造歩留まりが高く、エネルギー消費量も極めて低く抑えることが可能!

    ができないという問題があった。本発明によって、熱伝導性フィラーとして好適に用いることができる新規な構成のAlN粒子を簡易に提供することが可能になった。本発明は、従来のように原料であるアルミナ粒子をカーボン粒子によって完全に還元することなく、カーボン粒子とアルミナ粒子とを混合して坩堝内に配置した後、これらカーボン粒子及びアルミナ粒子に対してマイクロ波を照射することを特徴としている。...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学ウルトラファインバブルを用いた複合粒子T20-3142 製品画像

    東北大学ウルトラファインバブルを用いた複合粒子T20-3142

    レーザー吸収率が向上することで3Dプリンタで造形しやすく、耐食性、耐熱…

    性、耐熱性、耐酸化性などの諸特性が向上するメリットもある。  しかし、金属粒子とセラミックス粒子は共に水中で正に帯電するため、均一な複合粒子の作製が困難であるという課題がある。本発明者らは以前にカーボンナノチューブを用いて複合粒子を作製し、表面電荷調整用の薬剤やバインダを使用しないことに成功している。  本発明はウルトラファインバブルを用いることで、カーボンナノチューブすら添加せずに、完全に不...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:炭素材料の製造方法:T13-160 製品画像

    東北大学技術:炭素材料の製造方法:T13-160

    比較的低温な環境で、多量の炭素材料を生成

    ナノカーボンをはじめ、炭素材料を生成する方法として、CVD法や電気化学法が知られている。CDV法では、炭素を供給する物質を分解するため、高温下で炭素材料を生成する。また、電気化学法では、CDV法に比べ低い温度...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:金属ナノ・マイクロ突起黒体:T12-022 製品画像

    東北大学技術:金属ナノ・マイクロ突起黒体:T12-022

    紫外~可視~赤外光を95%以上吸収可能な金属ナノ・マイクロ突起黒体!

    黒体は、あらゆる光を完全に吸収できる物質であるが、光をほぼ完全に吸収できる物質としてカーボンナノチューブ(CNT)黒体が知られている。これは、紫外線から可視光、遠赤外線までの200nm-200μmの広い波長域で98%以上の光(電磁波)を吸収することができる。 このカーボンナノチューブは...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:金属/セラミックス複合材:T16-100 製品画像

    東北大学技術:金属/セラミックス複合材:T16-100

    表面に微細なセラミックスを微細分散させた高レーザ吸収型金属粉末、複雑形…

    とで粉末の複合化を達成しているが、バインダーによる組成変化に伴う機能性低下(具体的には、機械的性質の劣化、光吸度の低下、等)や製法時のハンドリングが困難であること、等の課題があった。 本発明は、カーボンナノチューブ(CNT)を用いて、セラミックスと金属を容易に複合体化させることが可能であり、各種粉体のバルク材への適用、例えば焼結材や3Dプリンターによる複合材料への適用が期待される。また金属とCN...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

  • 東北大学技術:新規Ptシリサイドナノ粒子:T17-068 製品画像

    東北大学技術:新規Ptシリサイドナノ粒子:T17-068

    市販のPt/C触媒より高い活性を持つ新規触媒

    電池電極触媒は、現行白金(Pt)を用いた材料やPtとその他の貴金属(Ni,Co,Pd等)の合金が用いられている。しかしながら現行の材料は高価という課題がある。一方で代替材料であるPtと安価な材料(カーボン等)の合金も活性効率の向上が必要という課題を有していた。本発明は資源量が豊富であるケイ素(Si)に注目し、ドライプロセスを経てPtとSiの合金ナノ粒子を作製することで前記課題を解決するものである。...

    メーカー・取り扱い企業: 株式会社東北テクノアーチ

1〜10 件 / 全 10 件
表示件数
45件
  • < 前へ
  • 1
  • 次へ >

※このキーワードに関連する製品情報が登録
された場合にメールでお知らせします。

  • 4校_0617_orionkikai_300_300_2045050.jpg