超音波システム研究所
最終更新日:2024-12-14 19:20:19.0
脱気ファインバブル発生液循環装置1.00
基本情報脱気ファインバブル発生液循環装置
<<脱気ファインバブル発生液循環装置>>
超音波システム研究所は、
超音波の制御を効率良く行うことができる
<<脱気マイクロバブル発生液循環装置>>の製造・開発方法・・を
コンサルティング対応しています。
<<脱気マイクロバブル発生液循環装置>>
1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です
3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、20μ以下のマイクロバブルが発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。
5)上記の脱気マイクロバブル発生液循環装置に対して
超音波を照射すると
マイクロバブルを超音波が分散・粉砕して
マイクロバブルの測定を行うと
ナノバブルの分布量がマイクロバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です。
超音波専用水槽(設計・製造・開発・コンサルティング対応)
超音波専用水槽を開発
超音波システム研究所は、
超音波の伝搬状態に関する計測技術を応用して、
超音波専用水槽を開発いたしました。
今回開発した超音波専用水槽を、
超音波洗浄や表面改質・・・に用いた結果、
超音波の利用効率以外にも、
キャビテーションや加速度の
伝搬状態の制御が簡単に行えるようになりました。
これは、全く新しい水槽の製造技術(注)と
表面処理技術であり、非常に大きな成果であることが、
状態を測定・解析することで確認しています。
注:オリジナル設計・製造・調整方法です
このの方法ならびに技術ノウハウを
コンサルティング事業として、対応しています。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答
mulnos:パワー寄与率
(詳細を見る)
取扱会社 脱気ファインバブル発生液循環装置
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発
脱気ファインバブル発生液循環装置へのお問い合わせ
お問い合わせ内容をご記入ください。