超音波システム研究所
最終更新日:2022-04-23 15:24:05.0
超音波とファインバブル(マイクロバブル)による洗浄技術3.00
基本情報超音波とファインバブル(マイクロバブル)による洗浄技術
超音波の非線形性に関する「測定・解析・制御」技術
超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
対象(弾性体、液体、気体)を伝搬する超音波振動の
ダイナミック特性を解析・評価する技術により、
洗浄物・治工具・超音波振動子・水槽・液循環・・に関する、
相互作用を<目的に合わせて最適化>する技術を開発しました。
超音波発振制御プローブ、超音波テスターを利用したこれまでの
発振・計測・解析により
各種の関係性・応答特性(注)を検討することで
超音波利用に関する出力の最適化技術として開発しました。
注:パワー寄与率、インパルス応答・・・
超音波の測定・解析に関して
サンプリング時間・・・の設定は
オリジナルのシミュレーション技術を利用しています
この技術を
超音波システム(洗浄、攪拌、加工・・・)の最適化技術として
コンサルティング対応しています。
超音波洗浄に関する、基礎検討システム
超音波システム研究所は、
「脱気・マイクロバブル制御による超音波システム」を応用した
超音波洗浄に関する
「基礎実験システム」を開発しました。
-今回開発したシステムの実験事例-
キャビテーションの洗浄効果の確認
加速度効果の確認
音響流による洗浄効果の確認
液循環による洗浄効果の確認
キャビテーションと液循環の相互作用の確認
洗浄物と洗浄水槽の相互作用の確認
・・・・・
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
超音波洗浄機の設計・製造・開発コンサルティング
超音波システム研究所は、
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。
今回開発した技術により
水槽の最大長さ:3cm(液量5cc)~
600cm(液量8000リットル)の
超音波専用水槽に対して、
超音波洗浄や表面改質・・・に適した
超音波の利用効率、キャビテーションと音響流のダイナミック制御、
対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。
従来の水槽(あるいは振動子)設計や製造においては
音響特性に対する考慮が十分でないために、
振動の干渉・減衰による不均一・不安定な事象により
超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。
この技術は、
現状の水槽・振動子・・に対しても
問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
改善・改良を行うことができます。
ーー提供ノウハウーー
0)装置の設計・製造方法
1)超音波のONOFF制御
2)液循環のONOFF制御
3)最適化ノウハウの提供
4)メガヘルツ超音波の利用方法
(詳細を見る)
超音波洗浄機の改良技術(コンサルティング対応)
超音波システム研究所は、
オリジナル製品:超音波システム(音圧測定解析、発振制御)による
超音波洗浄機の改良(コンサルティング対応)を行っています。
現状の超音波洗浄機に対して
音圧測定・解析に基づいた、改良方法を提案・実施します。
具体的には、
超音波の測定解析が容易にできる
「オリジナル製品:超音波テスターNA(推奨タイプ)」による
超音波洗浄機の測定・確認により
改善レベルについて打ち合わせ相談します。
改善レベルに合わせて
超音波の発振制御が容易にできる
「オリジナル製品:超音波発振システム(1MHz、20MHz)」
の利用を提案します。
水槽や洗浄液、洗浄物や洗浄レベルの状態・・・により
脱気ファインバブル発生液循環装置を提案します。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
取扱会社 超音波とファインバブル(マイクロバブル)による洗浄技術
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発
超音波とファインバブル(マイクロバブル)による洗浄技術へのお問い合わせ
お問い合わせ内容をご記入ください。