超音波システム研究所
最終更新日:2024-05-02 11:25:29.0
音圧測定解析に基づいた、キャビテーションと音響流の分類2.00
基本情報音圧測定解析に基づいた、キャビテーションと音響流の分類
--音圧測定データのバイスペクトル解析による、超音波の分類技術--
超音波システム研究所は、
超音波の音圧測定データをバイスペクトル解析することで、
超音波振動が伝搬する現象に関する分類方法を開発しました。
この分類方法は、
超音波の伝搬状態に関する、主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
線形(共振現象)と、非線形(高次高調波の発生現象)状態を推定し、
以下のような、4つのタイプに分類しています。
1:線形型
2:非線形型
3:ミックス型
4:変動型(各種制御による変化を利用するタイプ)
4-1:線形変動型
4-2:非線形変動型
4-3:ミックス変動型(ダイナミック変動型)
分類としては上記の通りですが、
実用的には、ミックス変動型(ダイナミック変動型)として
低調波から高調波を最適化する事が、超音波制御になります
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
超音波プローブを利用した超音波制御システム
超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。
超音波を利用した
洗浄、改質、検査、・・・への新しい応用システムです。
低周波の振動・音との組み合わせ制御による応用も可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
応用システム技術として開発しました。
ポイントは
表面弾性波の利用方法です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象(注2)として
対処することが重要です
注1:超音波の伝搬特性
非線形特性
応答特性
ゆらぎの特性
相互作用による影響
注2:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
(詳細を見る)
超音波発振制御システム(25MHz 2ch 200MSa/s)
超音波システム研究所は、
メガヘルツの超音波の発振制御が容易にできる
新しいファンクションジェネレーターとの組み合わせによる
「超音波発振制御システム2023」を開発しました。
システム概要(超音波発振システム(25MHz 2ch 200MSa/s))
内容
超音波発振プローブ 2本
ファンクションジェネレータ 1式(DG1022Z 25MHz 2ch 200MSa/s)
操作説明書 1式(USBメモリー)
超音波プローブの伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
解析には下記ツールを利用します
「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
超音波洗浄機のダイナミック液循環システム(コンサルティング対応)
(超音波洗浄機の測定・解析に基づいた制御システムを開発)
超音波システム研究所は、
超音波洗浄機の液体に伝搬する
超音波洗浄機の状態を測定・解析する技術を応用して、
水槽の構造・強度・製造条件・・・による影響と
液循環の状態を
目的に合わせた超音波洗浄機の状態に
設定・制御する技術を開発しました。
この技術は、
複雑な超音波振動のダイナミック特性(注1)を
各種の関係性について解析・評価することで、
循環ポンプの設定方法(注2)により、
キャビテーションと加速度の効果を
目的に合わせて設定する技術です。
注1:超音波システム研究所のオリジナル技術
「音色」を考慮した「超音波発振制御」技術を利用しています
注2:洗浄機と洗浄液と空気の
各境界の関係性に関する設定がノウハウです。
オーバーフロー構造になっていない洗浄水槽でも対応可能です。
ミクロ流の自己組織化について
脱気・曝気・超音波・水槽表面の弾性波動・・・により
音響流のコントロールが可能になりました。
(詳細を見る)
非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術
超音波システム研究所は、
超音波の発振制御による、表面弾性波の伝搬状態について
低周波と高周波の組み合わせによる
共振現象・非線形現象をコントロールする技術を開発しました。
新しい超音波伝搬部材(ステンレス線、チタン製ストロー・・)
の利用により、目的に合わせた効率の高い超音波利用が可能になります。
超音波テスターの音圧データの測定解析により
表面弾性波の複雑な変化を、
利用目的に合わせて、コントロールするシステム技術です。
実用的には、
複数(2種類)の超音波プローブによる
複数(2種類)の発振(スイープ発振、パルス発振)が
複雑な振動現象(オリジナル非線形共振現象)を発生させることで
高い音圧で高い周波数の伝搬状態、あるいは、
目的の固有振動数に合わせた低い周波数の伝搬状態を実現します。
特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
効率の高い超音波制御
(30W出力で、3000リットルの洗浄液に伝搬)を実現します。
(詳細を見る)
オリジナル超音波モデルに基づいた制御システムの開発技術
<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
D1=客観的知識(学術的論理に裏付けられた理論)
D2=経験的知識(これまでの結果)
D3=観測データ(現実の状態)
からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
その組織的利用から複数のモデル案を作成する
2)統計的思考法を、
情報データ群(DS)の構成と、
それに基づくモデルの提案と検証の繰り返し
によって情報獲得を実現する思考法と捉える
3)AIC の利用等の評価方法により、
様々なモデルの比較を行い、最適なモデルを決定する
4)作成したモデルに基づいて、超音波装置・システムを構築する
5)時間と効率を考え、
以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
装置やシステムの具体的打ち合わせに入る
(詳細を見る)
オリジナル超音波プローブによる、メガヘルツの超音波システム
超音波システム研究所は、
超音波機器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの超音波伝搬状態制御を可能にする
超音波システム技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・溶接・めっき・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
数トンの対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
(詳細を見る)
超音波洗浄機の改良技術(コンサルティング対応)
超音波システム研究所は、
オリジナル製品:超音波システム(音圧測定解析、発振制御)による
超音波洗浄機の改良(コンサルティング対応)を行っています。
現状の超音波洗浄機に対して
音圧測定・解析に基づいた、改良方法を提案・実施します。
具体的には、
超音波の測定解析が容易にできる
「オリジナル製品:超音波テスターNA(推奨タイプ)」による
超音波洗浄機の測定・確認により
改善レベルについて打ち合わせ相談します。
改善レベルに合わせて
超音波の発振制御が容易にできる
「オリジナル製品:超音波発振システム(1MHz、20MHz)」
の利用を提案します。
水槽や洗浄液、洗浄物や洗浄レベルの状態・・・により
脱気ファインバブル発生液循環装置を提案します。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
チタン製ストローを利用した、超音波伝搬制御技術
超音波システム研究所は、
キャビテーションと音響流の分類に基づいて
チタン製ストローを利用した
「超音波伝搬制御技術」を開発しました。
超音波テスターによる
流れと超音波とファインバブルの複雑な変化を、
各種の相互作用を含めた音圧測定解析により
利用目的に合わせて、
音響流の変化をコントロールするシステム技術です。
実用的には、
シャワー用の脱気ファインバブル発生液循環装置について
ON/OFF制御(あるいは流量・流速・・・の制御)を
各種相互作用・振動モードに対して最適化する方法です。
特に、チタン製ストローの音響特性と
メガヘルツ超音波の発振制御により、
オリジナル非線形共振現象(注1)をコントロールすることで、
新しいダイナミック超音波制御技術の効果を実現しています。
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
超音波の伝搬特性
1)振動モード
2)非線形現象
3)応答特性
4)相互作用
(詳細を見る)
取扱会社 音圧測定解析に基づいた、キャビテーションと音響流の分類
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発
音圧測定解析に基づいた、キャビテーションと音響流の分類へのお問い合わせ
お問い合わせ内容をご記入ください。