• 【日本語資料】日用品開発への分子シミュレーションと機械学習の活用 製品画像

    【日本語資料】日用品開発への分子シミュレーションと機械学習の活用

    計算化学のビギナーからエキスパートまで、幅広いユーザー向け物理ベースの…

    ディンガーのプラットフォームは、計算化学のビギナーからエキスパートまで、幅広いユーザー向けに設計されており、高度な物理ベースのモデリングと機械学習テクノロジーを駆使して、実際のシステムを構築、シミュレーション、分析するためのシンプルなワークフローを提供します。 ここでは、シュレディンガーの日用品研究開発向けアプリケーションを紹介します。 ■食品・飲料 ■化粧品とパーソナルケア ■洗...

    メーカー・取り扱い企業: シュレーディンガー株式会社

  • 【日本語事例集】 吸湿予測と非晶質アミロースデンプンへの影響 製品画像

    【日本語事例集】 吸湿予測と非晶質アミロースデンプンへの影響

    食品・飲料、包装、および医薬品の品質と加工の最適化を促進する分子動力学…

    ディンガーのプラットフォームは、計算化学のビギナーからエキスパートまで、幅広いユーザー向けに設計されており、高度な物理ベースのモデリングと機械学習テクノロジーを駆使して、実際のシステムを構築、シミュレーション、分析するためのシンプルなワークフローを提供します。 ■湿潤および乾燥状態の非晶質アミロース重合体に対するガラス転移温度(Tg)などの主要な物性を正確に予測。 ■水分含有量がTgお...

    メーカー・取り扱い企業: シュレーディンガー株式会社

  • 【事例集】材料モデリングのための機械学習力場 製品画像

    【事例集】材料モデリングのための機械学習力場

    Machine-learned force fields活用事例をご紹…

    2. ポリマー向けのスケーラブルで汎用性のあるMLFFの開発 3. イオン液体向けの機械学習による適合力場 シュレーディンガーは、幅広いアプリケーションにおいて正確な分子動力学シミュレーションを可能にし、高速かつ高精度な複雑な材料システムのモデリングを実現するため、先進的な機械学習による力場の開発に焦点を当てた研究サービスを提供しています。 ※お気軽にお問い合わせ下さい。...

    メーカー・取り扱い企業: シュレーディンガー株式会社

1〜3 件 / 全 3 件
表示件数
45件
  • < 前へ
  • 1
  • 次へ >

※このキーワードに関連する製品情報が登録
された場合にメールでお知らせします。

  • banner_202410_jp.jpg
  • Final_300_21-CAN-51700 SignalStar MVP 3rd Party Banners_Ad1 A New Star-300x300_v2-JP.jpg