超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-12-14 19:19:28.0

  •  
  • カタログ発行日:2021/8/25

超音波の伝搬状態を測定・解析・評価する技術1.0

基本情報超音波の伝搬状態を測定・解析・評価する技術

超音波技術(多変量自己回帰モデルによるフィードバック解析)

超音波システム研究所は、
 多変量自己回帰モデルによるフィードバック解析技術を応用した、
 「超音波の伝搬状態を測定・解析・評価する技術」を開発しました。

超音波テスターを利用したこれまでの
 計測・解析・結果(注)を時系列に整理することで
 目的に適した超音波の状態を示す
 新しい評価基準(パラメータ)になることを確認しました。

注:
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

統計数理の考え方を参考に
 対象物の音響特性・表面弾性波を考慮した
 オリジナル測定・解析手法を開発することで
 振動現象に関する、詳細な各種効果の関係性について
 新しい理解を深めています。

その結果、
 超音波の伝搬状態と対象物の表面について
 新しい非線形パラメータが大変有効である事例を確認しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境

超音波を利用した「振動計測技術」をコンサルティング対応

超音波を利用した「振動計測技術」をコンサルティング対応 製品画像

超音波システム研究所(所在地:東京都八王子市)は、
オリジナル製品(超音波テスター)を利用した全く新しい、
 <<振動計測技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析技術について、
 超音波の非線形現象に関する「測定・解析・制御」技術を応用します。

ものの表面を伝搬する超音波のダイナミック特性を
 測定・解析・評価したデータの蓄積から、
 低周波(0.1Hz)~高周波(200MHz)の振動状態を
 <測定・解析・評価>できる技術を開発しました。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
 に関して、新しい振動現象に基づいた対策が可能になりました。

これは、新しい方法および技術です、
 これまでの解析結果から
 様々な応用事例が発展しています。

 特に、標準測定時間として連続72時間のデータ採取が可能ですので
  非常に低い周波数の振動や
  不規則に変動する振動に対しても計測が可能です 


 (詳細を見る

小型ポンプと、超音波プローブによる超音波制御技術

小型ポンプと、超音波プローブによる超音波制御技術 製品画像

超音波システム研究所は、
小型ポンプを利用した液循環により
超音波の伝搬状態に関して、非線形現象をダイナミックに制御する
「超音波制御技術」を開発しました。

超音波テスターによる解析で、非線形現象を評価します。
超音波(超音波洗浄機、超音波プローブ、・・)の複雑な変化を、
超音波発振と超音波受信による音圧の時系列データ解析で、各種の相互作用を確認します。
相互作用の確認に基づいて、超音波プローブによる発振制御条件を最適化する事で、
目的に合わせた、ダイナミックな超音波コントロールシステムを実現します。

実用的には、超音波洗浄の場合、
現状の液循環装置について、ON/OFF制御(あるいは流量・流速・・・の制御)を
装置の設置状態、対象物を含めた表面弾性波に関する、超音波の伝搬特性を考慮して
超音波の出力・発振周波数・制御条件・・・を最適化します。

特に、ポンプの振動特性を利用して、
液体と気体を交互に循環させる・・・により、
新しい超音波・マイクロバブルの非線形効果を実現しています。
 (詳細を見る

超音波めっき処理技術(日本バレル工業株式会社)

超音波めっき処理技術(日本バレル工業株式会社) 製品画像

超音波システム研究所は、
日本バレル工業株式会社様と共同で、
めっき処理に関して、
超音波とファインバブルを利用した「めっき方法」を実施しています。

超音波伝搬状態の測定・解析・評価に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい超音波制御技術です。

各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。

ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象として
対処することが重要です

注1:超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

脱気ファインバブル発生液循環システムのコンサルティング

脱気ファインバブル発生液循環システムのコンサルティング 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム)を開発しました。

この技術を利用した
脱気マイクロバブル発生液循環システムの
コンサルティングを行っています。

複雑に変化する超音波の利用状態を、
 安定した状態で利用(制御)するために
 現場にある、具体的な水槽に対して
 脱気マイクロバブル発生液循環システムを追加セットする
 コンサルティングを行います。

1:原理の説明
2:洗浄機(装置)に合わせた具体的な提案
3:ノウハウ説明
4:確認方法、調整方法、メンテナンス方法の説明

ファインバブルとメガヘルツ超音波による非線形振動制御技術開発

この技術について
「超音波を利用した振動測定技術」としてコンサルティング対応しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

オリジナル超音波システム(音圧測定解析、発振制御)の製造販売

オリジナル超音波システム(音圧測定解析、発振制御)の製造販売 製品画像

超音波の測定解析と発振制御が容易にできる、超音波システム

超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」と
超音波の発振制御が容易にできる
「超音波発振システム(20MHz)」
 をセットにしたシステムによる実験を公開しています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

注:超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数
 (詳細を見る

音圧測定解析に基づいた、超音波プローブの非線形発振制御技術

音圧測定解析に基づいた、超音波プローブの非線形発振制御技術 製品画像

超音波システム研究所は、
ファンクションジェネレータの二つの発振チャンネルから
 2種類の超音波プローブを発振制御することで、
 各種の相互作用を最適化して
 超音波の非線形現象(注)をコントロールする技術を開発しました。

注:非線形(共振)現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる、超音波振動の共振現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
 効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波のダイナミックな変化を、
 利用目的に合わせて、コントロールするシステム技術です。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

超音波の音圧測定データ解析(「R」フリーな統計処理言語かつ環境)

超音波の音圧測定データ解析(「R」フリーな統計処理言語かつ環境) 製品画像

超音波システム研究所は、
オリジナル製品(超音波テスター)を利用した、全く新しい、
 <<表面弾性波の伝搬状態をコントロール技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析技術について、
 超音波の非線形現象に関する「測定・解析・評価」技術を応用します。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
 に関して、新しい振動現象に基づいた対策が可能になりました。

この技術について、コンサルティング対応しています。

注:解析には下記ツールを利用します
注:OML(Open Market License)
注:TIMSAC(TIMe Series Analysis and Control program)
注:「R」フリーな統計処理言語かつ環境

 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数
 (詳細を見る

<統計的な考え方>を利用した、超音波の測定・解析・評価技術

<統計的な考え方>を利用した、超音波の測定・解析・評価技術 製品画像

超音波システム研究所は、
 超音波利用に関して、
 <統計的な考え方>を利用した
 効果的な「測定・解析・評価方法」に関する技術を開発しています。

<統計的な考え方について>
 統計数理には、抽象的な性格と具体的な性格の二面があり、
 具体的なものとの接触を通じて
 抽象的な考えあるいは方法が発展させられていく、
 これが統計数理の特質である
  科学の中の統計学 赤池 弘次 (編集)より

<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。

正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。

<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )

1)先入観や経験は正しくないことがあると考える必要があります

2)モデルの本質を考えるためには、
 圏論を利用することが有効だと考えています
 (詳細を見る

超音波の各種相互作用を測定解析する技術に基づいた、超音波伝搬制御

超音波の各種相互作用を測定解析する技術に基づいた、超音波伝搬制御 製品画像

超音波システム研究所は、
 音圧測定解析装置(超音波テスター)と
 メガヘルツの超音波発振制御プローブの製造技術により
 超音波システムの音響特性(超音波の相互作用を測定解析)を考慮した、
 「超音波の非線形伝搬制御技術」を開発しました。

今回開発した技術により
 「超音波の発振(発振機・振動子・・)」による
 対象物・超音波機器・治工具・・・を含めた、
 各種の相互作用を測定解析に基づいて、
 目的に合わせた、超音波のダイナミック制御が、可能になりました。

注:自己相関、バイスペクトル、パワー寄与率、インパルス応答

特に、
 高調波に関する超音波と対象物の相互作用を検出・確認することで
 複雑な形状や、精密部品の洗浄に対する効果的な
 制御(液循環、治工具、洗浄物の固定方法、・・・)が明確になります。

従って、適切な
 超音波周波数の選択や
 異なる超音波周波数の振動子の組み合わせ・・
 対象物に合わせた使用方法が決定できます。

これは、加工・洗浄・表面改質・化学反応の促進・・・に対して
 目的に合わせた
 効果的な超音波利用技術です。
 (詳細を見る

超音波洗浄機の改良技術(コンサルティング対応)

超音波洗浄機の改良技術(コンサルティング対応) 製品画像

現状の超音波洗浄機を改良する方法
(超音波水槽と液循環の最適化技術を開発)

超音波システム研究所は、
 超音波水槽の構造・強度・製造条件・・・による影響と
 水槽内の液体の循環方法を設定することで
 超音波の伝搬状態を制御する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注)により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。

注:水槽と循環液と空気の
  境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない水槽でも対応可能です。

具体的な対応として
 現状の水槽による、超音波を減衰させる問題点を
 液循環ポンプの設定により
 対策するということができます。

特に精密な、ナノレベルの洗浄に対しては
 メガヘルツの超音波発振プローブによる発振制御の追加対応を
 提案実施対応します 

 (詳細を見る

超音波超音波洗浄機の製造・開発・コンサルティング対応

超音波超音波洗浄機の製造・開発・コンサルティング対応 製品画像

超音波システム研究所は、
 超音波制御が簡単にできる、標準タイプの超音波装置に関して
 標準サイズからの変更による超音波伝搬状態の影響に関する
 測定・解析・評価技術を開発しました。
この技術を応用して、
 目的に合わせた、水槽サイズの超音波システムを
 製造・開発・コンサルティング対応します。

装置概要

*超音波システム(超音波洗浄機)

1:超音波
2:超音波水槽
3:循環ポンプ(脱気・マイクロバブル発生液循環システム)
4:タイマー


超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

超音波の音圧測定解析(コンサルティング対応)

超音波の音圧測定解析(コンサルティング対応) 製品画像

超音波システム研究所は、
 多変量自己回帰モデルによるフィードバック解析技術を応用した、
 「超音波の伝搬状態を測定・解析・評価する技術」を利用して
 超音波利用に関するコンサルティング対応を行っています。

超音波テスターを利用したこれまでの
 計測・解析・結果(注)を時系列に整理することで
 目的に適した超音波の状態を示す
 新しい評価基準(パラメータ)を設定・確認します。

注:
 非線形特性(音響流のダイナミック特性)
 応答特性
 ゆらぎの特性
 相互作用による影響

統計数理の考え方を参考に
 対象物の音響特性・表面弾性波を考慮した
 オリジナル測定・解析手法を開発することで
 振動現象に関する、詳細な各種効果の関係性について
 新しい理解を深めています。

その結果、
 超音波の伝搬状態と対象物の表面について
 新しい非線形パラメータが大変有効である事例による
 実績が増えています。

特に、洗浄・加工・表面処理効果に関する評価事例・・
 良好な確認に基づいた、制御・改善・・・が実現します。

 (詳細を見る

叩いて(低周波刺激で)超音波を利用する技術をコンサルティング対応

叩いて(低周波刺激で)超音波を利用する技術をコンサルティング対応 製品画像

超音波システム研究所は、
 *超音波の発振制御技術(オリジナル製品:超音波発振制御プローブ)
 *超音波伝搬状態の測定技術(オリジナル製品:超音波テスター)
 *超音波伝搬状態の解析技術(時系列データの非線形解析システム)
 *超音波伝搬状態の最適化技術(音と超音波の最適化処理)
 *超音波発振プローブ・伝搬用具の開発製造技術
 *システムの表面弾性波をコントロールする技術
 ・・・・
 上記の技術を応用して

 <音と超音波の組み合わせ>を利用した
  超音波(非線形共振現象)の制御技術を開発・応用しています。

注:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動(高調波10次以上)の共振現象


この技術の応用事例として、
 各種部品・材料の状態(空中、水中、弾性体との接触・・)に合わせた、
 超音波の効果的な利用(洗浄・表面改質・攪拌・化学反応促進・・・
 各種システムの振動制御)を実現させています。
 (詳細を見る

1MHz以下のスイープ発振制御システム

1MHz以下のスイープ発振制御システム 製品画像

超音波システム研究所は、
超音波の発振制御が容易にできる
「超音波発振システム(1MHz)」について、
 タイマー制御により応用する方法を公開しました。

具体例
1)機械加工油へ、夜間に超音波照射で加工油の劣化防止
2)NCマシンへの超音波照射による、品質の改善
3)金属、樹脂・・部品を保管している棚への超音波照射(表面改質)
4)めっき液、洗浄液、溶剤、・・への超音波照射で、
  流動性、濃度の均一化・・の改善
5)溶接機械への超音波照射で、溶接品質の改善
6)ろう付け装置、曲げ加工装置への超音波照射で、表面残留応力の緩和
7)超音波洗浄機への超音波照射で洗浄レベルの改善
・・・・
・・・

19)その他
   1:各種振動(例 モータ・・)との組み合わせ利用
   2:休日(2-3時間)の超音波照射による、保守メンテナンス
   3:超音波照射による、エージング処理
   ・・・・・
   ・・・・・
   ファインバブルとの組み合わせ利用
   複数の超音波の組み合わせ発振制御
   超音波伝搬用具の利用


 (詳細を見る

取扱会社 超音波の伝搬状態を測定・解析・評価する技術

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発

超音波の伝搬状態を測定・解析・評価する技術へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例