超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-10-26 13:34:33.0

  •  
  • カタログ発行日:2024/10/26

音響特性テストに基づいた超音波洗浄技術-Ver22.00

基本情報音響特性テストに基づいた超音波洗浄技術-Ver2

オリジナル超音波洗浄システムの開発技術

超音波システム研究所は、
 対象物の表面を伝搬する超音波データの解析実績から
 メガヘルツの超音波発振による、表面検査技術を開発しました。

この技術を利用して、洗浄対象物の超音波伝搬特性評価を行い
 効果的な、超音波洗浄機の制御・周波数・出力レベル・・・について
 報告書にまとめ提案してきました。

超音波プローブの発振制御による
 「音圧・振動」測定・解析技術を応用した方法です。

対象物の表面を伝搬する振動モードに合わせた
 オリジナル超音波プローブを使用することで、
 狭い溝やエッジ部に伝搬する超音波の伝搬状態を確認します。

特に、伝搬現象におけるダイナミック特性を確認することで
 洗浄効果のバラツキに対する特性が検出出来ます。

音響特性に基づいた、オリジナルのスイープ発振制御により
 低周波の伝搬特性や非線形性による高調波の発生状態について
 目的の洗浄効果に合わせた超音波のダイナミック制御として実現します。

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ 製品画像

超音波システム研究所は、
500Hzから900MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
日本バレル工業株式会社様の、鉄めっき技術を利用した、
新しい超音波伝搬用具(超音波プローブ・・・)を開発しました。
この超音波技術を、コンサルティング対応しています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 1.0kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析確認)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

利用に関しては、デジタル制御による、
離散値的なファンクションジェネレータの特性を利用した
各種パラメータの設定がポイントです

非線形共振型超音波発振プローブを利用することで
共振現象による音圧レベルの制御範囲が大きく広がるため
従来の共振現象による音圧レベルとは大きく異なり
ダメージや破壊といった現象にならない
音圧測定解析に基づいた、制御設定の最適化が可能です。

 (詳細を見る

ステンレス製真空二重構造容器を利用した超音波発振制御プローブ

ステンレス製真空二重構造容器を利用した超音波発振制御プローブ 製品画像

超音波システム研究所は、
900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 1.0kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
 発振制御により、音圧レベル、周波数、ダイナミック特性について
 目的に合わせた伝搬状態を実現します

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
 (詳細を見る

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術 製品画像

超音波システム研究所は、
500Hzから500MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。

超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。

各種部材の音響特性の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
 (詳細を見る

超音波プローブのオーダーメード対応

超音波プローブのオーダーメード対応 製品画像

超音波システム研究所は、
900MHz以上の超音波制御を可能にする
超音波プローブの対応を行っています。

目的に合わせた、
 オリジナル超音波発振制御プローブを製造開発対応します。

ポイントは、オリジナルプローブの動作確認です。
超音波の送受信について、ダイナミックな変化に対する
応答性が最も重要です。
この特性により、高調波の応用範囲が決定します。
現状では、以下の範囲について対応可能となっています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
 発振制御により、音圧レベル、周波数、ダイナミック特性について
 目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。
 (詳細を見る

超音波装置の改善・改良 <音圧データの計測・解析・評価>

超音波装置の改善・改良 <音圧データの計測・解析・評価> 製品画像

超音波の音圧測定・解析・評価技術を応用

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム技術)を開発しました。

この技術を利用した
超音波装置の<計測・解析・評価>対応を行います。

具体的な対応・費用・・・については
メールでお問い合わせください

*コメント*

現状、超音波利用に関して

利用目的に対して最適な超音波の状態を

検出・確認することは大変難しいと思います

そこで、超音波に関する日常管理に「音圧データ」を取り入れることで

最終評価状態(不良率、歩留まり、・・・)との関係を

統計データの蓄積と解析を通して、解決したいと考えて実施してきました

時系列データの解析技術(注)を利用して分析することで

効果的な改善が実現するようになりました

このような改善を継続した結果

低出力の超音波発振制御にによる成功例が増えたことで

オリジナル製品:超音波システム(音圧測定解析、発振制御)を、

2021年3月より製造販売しています
 (詳細を見る

超音波洗浄機の改良技術(コンサルティング対応)

超音波洗浄機の改良技術(コンサルティング対応) 製品画像

現状の超音波洗浄機を改良する方法
(超音波水槽と液循環の最適化技術を開発)

超音波システム研究所は、
 超音波水槽の構造・強度・製造条件・・・による影響と
 水槽内の液体の循環方法を設定することで
 超音波の伝搬状態を制御する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注)により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。

注:水槽と循環液と空気の
  境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない水槽でも対応可能です。

具体的な対応として
 現状の水槽による、超音波を減衰させる問題点を
 液循環ポンプの設定により
 対策するということができます。

特に精密な、ナノレベルの洗浄に対しては
 メガヘルツの超音波発振プローブによる発振制御の追加対応を
 提案実施対応します 

 (詳細を見る

超音波とファインバブル(マイクロバブル)による洗浄技術

超音波とファインバブル(マイクロバブル)による洗浄技術 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
対象(弾性体、液体、気体)を伝搬する超音波振動の
ダイナミック特性を解析・評価する技術により、
洗浄物・治工具・超音波振動子・水槽・液循環・・に関する、
相互作用を<目的に合わせて最適化>する技術を開発しました。

超音波発振制御プローブ、超音波テスターを利用したこれまでの
発振・計測・解析により
各種の関係性・応答特性(注)を検討することで
 超音波利用に関する出力の最適化技術として開発しました。

注:パワー寄与率、インパルス応答・・・

超音波の測定・解析に関して
 サンプリング時間・・・の設定は
 オリジナルのシミュレーション技術を利用しています

この技術を
 超音波システム(洗浄、攪拌、加工・・・)の最適化技術として
 コンサルティング対応しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

超音波超音波洗浄機の製造・開発・コンサルティング対応

超音波超音波洗浄機の製造・開発・コンサルティング対応 製品画像

超音波システム研究所は、
 超音波制御が簡単にできる、標準タイプの超音波装置に関して
 標準サイズからの変更による超音波伝搬状態の影響に関する
 測定・解析・評価技術を開発しました。
この技術を応用して、
 目的に合わせた、水槽サイズの超音波システムを
 製造・開発・コンサルティング対応します。

装置概要

*超音波システム(超音波洗浄機)

1:超音波
2:超音波水槽
3:循環ポンプ(脱気・マイクロバブル発生液循環システム)
4:タイマー


超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

超音波の音圧測定解析(コンサルティング対応)

超音波の音圧測定解析(コンサルティング対応) 製品画像

超音波システム研究所は、
 多変量自己回帰モデルによるフィードバック解析技術を応用した、
 「超音波の伝搬状態を測定・解析・評価する技術」を利用して
 超音波利用に関するコンサルティング対応を行っています。

超音波テスターを利用したこれまでの
 計測・解析・結果(注)を時系列に整理することで
 目的に適した超音波の状態を示す
 新しい評価基準(パラメータ)を設定・確認します。

注:
 非線形特性(音響流のダイナミック特性)
 応答特性
 ゆらぎの特性
 相互作用による影響

統計数理の考え方を参考に
 対象物の音響特性・表面弾性波を考慮した
 オリジナル測定・解析手法を開発することで
 振動現象に関する、詳細な各種効果の関係性について
 新しい理解を深めています。

その結果、
 超音波の伝搬状態と対象物の表面について
 新しい非線形パラメータが大変有効である事例による
 実績が増えています。

特に、洗浄・加工・表面処理効果に関する評価事例・・
 良好な確認に基づいた、制御・改善・・・が実現します。

 (詳細を見る

ファインバブルと超音波による、表面処理技術

ファインバブルと超音波による、表面処理技術 製品画像

<<脱気ファインバブル発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させる。
2)キャビテーションにより溶存気体の気泡が発生する。
上記が脱気液循環装置の状態。

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなる。
4)適切な液循環により、
20μ以下のファインバブルが発生する。
上記が脱気マイクロバブル発生液循環装置の状態。

5)上記の脱気ファインバブル発生液循環装置に対して
超音波を照射すると
ファインバブルを超音波が分散・粉砕して
ファインバブルの測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなる
上記の状態が、超音波を安定して制御可能にした状態。

6)超音波を安定して制御可能な状態に対して
オリジナル製品:メガヘルツの超音波発振制御プローブにより
メガヘルツの超音波を発振制御する。
音圧レベルの制御方法は、液循環とメガヘルツの超音波の
オリジナル非線形共振現象をコントロールすることで
効果的なダイナミック状態に設定・制御する。

 (詳細を見る

オリジナル超音波モデルに基づいた制御システムの開発技術

オリジナル超音波モデルに基づいた制御システムの開発技術 製品画像

<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
 D1=客観的知識(学術的論理に裏付けられた理論)
 D2=経験的知識(これまでの結果)
 D3=観測データ(現実の状態)
 からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
 その組織的利用から複数のモデル案を作成する

2)統計的思考法を、
 情報データ群(DS)の構成と、
  それに基づくモデルの提案と検証の繰り返し
  によって情報獲得を実現する思考法と捉える

3)AIC の利用等の評価方法により、
 様々なモデルの比較を行い、最適なモデルを決定する

4)作成したモデルに基づいて、超音波装置・システムを構築する

5)時間と効率を考え、
 以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
   「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
   装置やシステムの具体的打ち合わせに入る
 (詳細を見る

超音波とファインバブルによる非線形現象を利用した超音波洗浄機

超音波とファインバブルによる非線形現象を利用した超音波洗浄機 製品画像

超音波システム研究所は、
 超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
 超音波加工、攪拌、化学反応・・にも利用可能な、
 マイクロバブルを利用した超音波洗浄機を開発しました。

推奨システム概要

1:超音波とマイクロバブルによる表面改質処理を行った
  2種類の超音波振動子(標準タイプ 38kHz,72kHz)

2:超音波とマイクロバブルによる表面改質処理を行った
  超音波専用水槽(標準タイプ 内側寸法:500*310*340mm)

3:脱気・マイクロバブル発生液循環システム

4:制御装置による、超音波出力と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム

*特徴

超音波専用水槽による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
2種類の超音波(振動子)を組み合わせて制御します

推奨タイプの組み合わせは
 38kHz、72kHzの状態です

20μm以下のファインバブルを安定して利用する技術
 (詳細を見る

オリジナル超音波プローブによる、超音波発振システム(20MHz)

オリジナル超音波プローブによる、超音波発振システム(20MHz) 製品画像

超音波システム研究所は、
メガヘルツの超音波の発振制御が容易にできる
「発振システム(20MHz)」を製造販売しています。

システム概要(超音波発振システム(20MHz))

 内容(20MHzタイプ)
  超音波発振プローブ 2本
  ファンクションジェネレータ 1式
  操作説明書 1式(USBメモリー)

 特徴(20MHzタイプ)
  *超音波発振周波数
   仕様 20kHz から 25MHz(あるいは24MHz)
  *出力範囲 5mVp-p~20Vp-p
  *サンプリングレート:200MSa/s(あるいは250MSa/s)

 市販のファンクションジェネレータを利用したシステムです
  目的に応じたファンクションジェネレータをセットにして
  見積価格を提案します

標準参考例
 発振システム20MHz 8万円~

2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発
2024.10 メガヘルツ超音波を利用した「振動技術」を開発
2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発

 (詳細を見る

オリジナル超音波プローブによるメガヘルツ超音波の発振制御装置

オリジナル超音波プローブによるメガヘルツ超音波の発振制御装置 製品画像

超音波システム研究所は、
下記オリジナル製品を利用した超音波システムを製造販売しています。
1) 音圧測定解析システム(超音波テスター)
2) メガヘルツの超音波発振制御プローブ
3) 超音波発振システム(20MHzタイプ)
 
音圧測定解析システム:超音波テスターの特徴
200MHzタイプ
  *測定(解析)周波数の範囲
   仕様 0.01Hz から 200MHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

超音波プローブの伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出

 (詳細を見る

超音波の音圧測定データ解析(R言語)

超音波の音圧測定データ解析(R言語) 製品画像

超音波システム研究所は、
オリジナル製品(超音波テスター)を利用した、全く新しい、
 <<表面弾性波の伝搬状態をコントロール技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析技術について、
 超音波の非線形現象に関する「測定・解析・評価」技術を応用します。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
 に関して、新しい振動現象に基づいた対策が可能になりました。

この技術について、コンサルティング対応しています。

注:解析には下記ツールを利用します
注:OML(Open Market License)
注:TIMSAC(TIMe Series Analysis and Control program)
注:「R」フリーな統計処理言語かつ環境

 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数
 (詳細を見る

超音波の音圧測定解析システム「超音波テスターNA」

超音波の音圧測定解析システム「超音波テスターNA」 製品画像

特徴(標準的な仕様の場合)

  *測定(解析)周波数の範囲
   仕様 0.1Hz から 10MHz
  *超音波発振
   仕様 1Hz から 100kHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置や状態と、弾性波動を考慮した解析で、
 各種の音響性能として検出します。

超音波プローブ:概略仕様
測定範囲 0.01Hz~10MHz
発振範囲 1kHz~25MHz
伝搬範囲 1kHz~900MHz以上
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

音圧データ解析による、超音波のシステム技術(コンサルティング)

音圧データ解析による、超音波のシステム技術(コンサルティング) 製品画像

超音波のシステム技術

1:専用水槽の開発技術
2:超音波振動子の改良技術
3:超音波伝搬状態の測定技術
4:超音波(音響流)制御技術

 上記に関する システム技術 を提供しています。

目的に合わせた超音波の制御を可能にする技術です。

 *超音波振動子改良技術ノウハウ・・・*

 *超音波水槽の設計技術ノウハウ・・・*

 *超音波伝搬状態の測定技術ノウハウ・・・*

 *超音波(音響流)の制御技術ノウハウ・・・*

    以上を提供させていただきます

詳細は 超音波システム研究所 にメールでお問い合わせください
 (詳細を見る

超音波プローブの発振制御による表面検査技術

超音波プローブの発振制御による表面検査技術 製品画像

超音波システム研究所は、
 対象物の表面を伝搬する超音波データの解析実績から
 メガヘルツの超音波発振による、新しい表面検査技術を開発しました。

超音波プローブの発振制御による
 「音圧・振動」測定・解析技術を応用した方法です。

目的(対象物の表面を伝搬する振動モード)に合わせた
 超音波プローブの開発対応による、
 コンサルティング・評価技術の説明対応を行っています。

新しい超音波発振制御技術の応用です。
 対象物の音響特性に合わせた、
 メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
 対象物の表面状態に関する新しい特徴を検出することが可能です。

特に、発振・受信の組み合わせによる
 応答特性を利用した
 基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
 超音波振動の新しい評価パラメータとなる基本技術です。

表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
 測定・解析・評価に基づいて
 論理モデルを構成・修正しながら検討することで
 目的(評価)に合わせた効果的な利用を可能にしました。

 (詳細を見る

取扱会社 音響特性テストに基づいた超音波洗浄技術-Ver2

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発

音響特性テストに基づいた超音波洗浄技術-Ver2へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例