超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2023-09-03 18:07:10.0

  •  
  • カタログ発行日:2023/6/3

メガヘルツ超音波の効果(超音波洗浄機の改善)2.00

基本情報メガヘルツ超音波の効果(超音波洗浄機の改善)

超音波プローブの発振制御による、音響流の非線形現象を制御する方法

メガヘルツ超音波の効果(超音波洗浄機の改善)
--音響流の非線形現象--

超音波発振条件(実験用 量産対応の場合最適化を行います)

<超音波振動子の発振>
超音波1 40kHz 300W  出力30% 
タイマー制御 ON:30秒  OFF:17秒

<超音波発振制御プローブの発振>
超音波2
 Ch1 矩形波 スイープ発振 3-20MHz
 Ch2 矩形波 パルス発振  8.7MHz

ポンプ(脱気ファインバブル発生液循環装置)タイマー制御
ON:67秒  OFF:16秒

超音波の発振制御システム(超音波システム研究所)

超音波の発振制御システム(超音波システム研究所) 製品画像

超音波システム研究所は、
 オリジナル超音波システム(音圧測定解析、発振制御)により、
 対象物に伝搬する表面弾性波(超音波振動)の、
 非線形現象をコントロールする技術を開発しました。

<<超音波の非線形現象をコントロールする技術>>

1)ファンクションジェネレータによる発振制御を
 対象物の音響特性に合わせて、
 発振出力、波形、変化・・・させる制御設定技術

2)超音波発振電圧の変化を、制御可能にする
 超音波発振制御プローブの、発振面の調整を含めた製造技術

3)100メガヘルツの超音波振動変化を、計測可能にする
 超音波測定プローブの、発振面の調整を含めた製造技術

4)スイープ発振条件の最適化技術

上記の技術を利用して
 目的に合わせた
 超音波の伝搬状態をコントロール(最適化)します。

注:対象物の音響特性と超音波の発振制御による相互作用について
 非線形現象に関する音圧データの解析評価に基づいて
 超音波のダイナミック制御・・・・を行います
 (超音波テスターで、音圧の測定・解析・確認・評価を行っています)

 (詳細を見る

超音波の測定・解析が容易にできる、超音波テスターNA

超音波の測定・解析が容易にできる、超音波テスターNA 製品画像

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置・状態・弾性波動を考慮した解析で、
 各種の音響性能として検出します。

特徴(仕様)
  *測定(解析)周波数の範囲
   仕様 0.1Hz から 200MHz
  *超音波発振
   仕様 1Hz から 1MHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数


 (詳細を見る

超音波機器の計測解析サービス(コンサルティング対応)

超音波機器の計測解析サービス(コンサルティング対応) 製品画像

超音波のダイナミック特性を解析・評価する技術を応用

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・実験・評価>方法(システム)を開発しました。

この技術を利用した
超音波洗浄機の
 <音圧計測・実験・解析・評価>(出張対応)を行っています。

複雑に変化する超音波の利用状態を、
 音圧や周波数だけで評価しないで
 「音色」を考慮するために、
 時系列データの自己回帰モデルにより解析して
 統計モデルに基づいた<評価・応用>を報告・提案します。

 (詳細を見る

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング 製品画像

超音波専用水槽(オリジナル製造方法)による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
複数の超音波と
脱気ファインバブル発生液循環装置を
音圧測定解析に基づいて発振制御します

様々な、組み合わせと
 使用(制御)方法を提案しています

ポイントは
目的の対象に合わせた超音波伝搬状態を実現させる
専用水槽内の「溶存酸素濃度分布」と「液循環」です

<<脱気ファインバブル(マイクロバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

 (詳細を見る

複数の異なる周波数の「超音波振動子」を利用する技術

複数の異なる周波数の「超音波振動子」を利用する技術 製品画像

超音波システム研究所は、
複数の異なる周波数の「超音波振動子」を利用する技術を開発しました。

この技術は
 定在波の制御技術に加え、
 各超音波振動子の出力を調整することで、
 キャビテーションと加速度の非線形効果を
 目的に合わせて変化させるという技術です。

周波数40kHz、出力50-600Wの超音波振動子を利用して、
 直径1ミリの金属管を1ミクロンの分散状態にすることも、
 ダメージを発生させずに洗浄することも可能です。

オリジナルの超音波伝搬状態の測定・解析技術により、
 振動子の固有の特徴に合わせた、
 超音波利用技術として、各種を確認しています。

これは、新しい超音波技術であり、
 超音波のダイナミック特性による一般的な効果を含め
 新素材の開発、攪拌、分散、洗浄、化学反応実験・・・
 に大きな特徴的な固有の操作技術として、
  利用・発展できると考えています。

超音波の伝搬特性
1)振動モード(自己相関の変化)
2)非線形現象(バイスペクトルの変化)
3)応答特性(インパルス応答の解析)
4)相互作用(パワー寄与率の解析)
 (詳細を見る

取扱会社 メガヘルツ超音波の効果(超音波洗浄機の改善)

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発

メガヘルツ超音波の効果(超音波洗浄機の改善)へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例