超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2023-08-27 09:59:44.0

  •  
  • カタログ発行日:2023/8/21

超音波発振(スイープ発振、パルス発振)システム-ノウハウ3-1.00

基本情報超音波発振(スイープ発振、パルス発振)システム-ノウハウ3-

--超音波の非線形現象をコントロールする技術--

超音波発振(スイープ発振、パルス発振)システム-ノウハウ3-
--超音波の非線形現象をコントロールする技術--

超音波システム研究所は、
オリジナル超音波プロ-ブの製造技術により
プローブの音響特性に基づいた、発振制御技術を開発しました。
表面弾性波の非線形振動現象をコントロールする技術に発展しています。

ポイントは、超音波素子表面の表面弾性波について
伝搬特性と利用目的に合わせた、超音波発振制御に関する
最適化制御方法(スイープ発振とパルス発振の組み合わせ条件)です。

そのために、
オリジナルプローブの超音波伝搬特性の動作確認
(音圧レベル、周波数範囲、非線形性、・・ダイナミック特性)による、
超音波伝搬状態に関するダイナミックな特性評価が重要です。

特に、超音波プローブ(あるいは素子)の送受信特性と
発振器(ファンクションジェネレーター)についての、
ダイナミックに変化する発振特性の測定・解析・評価が必要です。

オリジナル超音波プローブによる、メガヘルツの超音波システム

オリジナル超音波プローブによる、メガヘルツの超音波システム 製品画像

超音波システム研究所は、
超音波機器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの超音波伝搬状態制御を可能にする
超音波システム技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・溶接・めっき・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 数トンの対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 治工具(弾性体:金属・ガラス・樹脂)の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

 (詳細を見る

超音波プローブによるスイープ発振制御技術

超音波プローブによるスイープ発振制御技術 製品画像

超音波システム研究所は、
超音波プローブによる
スイープ発振による超音波の伝搬制御技術を開発しました。

超音波発振制御プローブの伝搬特性により、
利用目的と相互作用に合わせた、
各超音波プローブ毎に、スイープ発振の条件設定を行います。

対象物や装置・水槽、治工具・・の振動モードを考慮することで、
システムの振動系に合わせた、スイープ発振条件により、
低周波の共振現象を制御することが、可能になります。
30W程度の出力でも
3000-5000リットルの水槽内に
高い音圧・周波数の超音波振動を伝搬制御することが可能になります。

<<具体例>>
ダイナミックな変化として、低周波の共振現象と同時に、
超音波プローブの1~10MMHzのスイープ発振条件により、
10次、30次、100次・・・高調波の発生を実現が、
精密洗浄やナノレベルの分散・・に応用出来ます。

ポイントは、音圧データの測定・解析に基づいた
 システムのダイナミックな振動特性を解析・評価することです。

超音波の伝搬特性
1)振動モード
2)非線形現象
3)応答特性
4)相互作用
 (詳細を見る

超音波発振制御システム(25MHz 2ch 200MSa/s)

超音波発振制御システム(25MHz 2ch 200MSa/s) 製品画像

超音波システム研究所は、
メガヘルツの超音波の発振制御が容易にできる
新しいファンクションジェネレーターとの組み合わせによる
 「超音波発振制御システム2023」を開発しました。

システム概要(超音波発振システム(25MHz 2ch 200MSa/s))

 内容
  超音波発振プローブ 2本
  ファンクションジェネレータ 1式(DG1022Z 25MHz 2ch 200MSa/s)
  操作説明書 1式(USBメモリー)

超音波プローブの伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)

解析には下記ツールを利用します
「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術

非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術 製品画像

超音波システム研究所は、
 超音波の発振制御による、表面弾性波の伝搬状態について
 低周波と高周波の組み合わせによる
 共振現象・非線形現象をコントロールする技術を開発しました。
 新しい超音波伝搬部材(ステンレス線、チタン製ストロー・・)
 の利用により、目的に合わせた効率の高い超音波利用が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波の複雑な変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた低い周波数の伝搬状態を実現します。

特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
 効率の高い超音波制御
 (30W出力で、3000リットルの洗浄液に伝搬)を実現します。
 (詳細を見る

取扱会社 超音波発振(スイープ発振、パルス発振)システム-ノウハウ3-

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発

超音波発振(スイープ発振、パルス発振)システム-ノウハウ3-へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例