超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-04-25 16:33:04.0

  •  
  • カタログ発行日:2023/11/14

音圧測定・解析に基づいた超音波洗浄機の制御技術1.00

基本情報音圧測定・解析に基づいた超音波洗浄機の制御技術

―多変量自己回帰モデルによるフィードバック解析技術を応用―

超音波システム研究所は、
超音波の発振制御による、表面弾性波の伝搬状態について
低周波と高周波の組み合わせによる
共振現象をコントロールする技術を開発しました。

新しい超音波伝搬部材(ステンレス線、チタン製ストロー・・)
の利用により、目的に合わせた効率の高い超音波利用が可能になります。

超音波テスターの音圧データの測定解析により
表面弾性波の複雑な変化を、
利用目的に合わせて、コントロールするシステム技術です。

実用的には、
複数(2種類)の超音波プローブによる
複数(2種類)の発振(スイープ発振、パルス発振)が
複雑な振動現象(オリジナル非線形共振現象)を発生させることで
高い音圧で高い周波数の伝搬状態、あるいは、
目的の固有振動数に合わせた低い周波数の伝搬状態を実現します。

特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
効率の高い超音波制御(30W出力で、3000リットルの洗浄液に伝搬)を実現

超音波の伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出(パワー寄与率の解析)

超音波の音圧測定プローブを製造・開発する技術を提供

超音波の音圧測定プローブを製造・開発する技術を提供 製品画像

超音波システム研究所は、
0.1Hz~800MHzの超音波伝搬状態を測定可能にする
超音波プローブ・音圧測定解析システムの製造・開発技術を、
コンサルティング提供します。

超音波の音圧測定解析システム(超音波テスター:標準システム)
1.内容
  超音波洗浄機の音圧測定専用プローブ 1本
  超音波測定汎用プローブ  1本
  オシロスコープセット 1式
  解析ソフト・説明書・各種インストールセット 1式(USBメモリー)

2.特徴(標準的な仕様の場合)

  *測定(解析)周波数の範囲
   仕様 0.1Hz から 10MHz
  *超音波発振
   仕様 1Hz から 100kHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置や状態と、弾性波動を考慮した解析で、
 各種の音響性能として検出します。 (詳細を見る

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング 製品画像

超音波専用水槽(オリジナル製造方法)による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
複数の超音波と
脱気ファインバブル発生液循環装置を
音圧測定解析に基づいて発振制御します

様々な、組み合わせと
 使用(制御)方法を提案しています

ポイントは
目的の対象に合わせた超音波伝搬状態を実現させる
専用水槽内の「溶存酸素濃度分布」と「液循環」です

<<脱気ファインバブル(マイクロバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

 (詳細を見る

超音波洗浄器の表面改質処理(コンサルティング)

超音波洗浄器の表面改質処理(コンサルティング) 製品画像

超音波システム研究所は、
超音波とマイクロバブルによる表面付近の残留応力を緩和する技術を
超音波振動子に適応させる方法を開発(公開)しました。

超音波とマイクロバブルによる、残留応力を緩和する技術により
 金属疲労・・に対する疲れ強さの改善を行うことが
 超音波振動子の表面の均一化と超音波発振の効率化につながることで
 超音波の使用状況が大きく変わることを経験してきました。

特に、洗剤や溶剤を利用した超音波洗浄においては
 超音波が対象物の音響特性に合わせて
 条件設定により、効果的な反射・屈折・透過を起こすことで
 目的に合わせた超音波制御が実現しました。


この技術を
 コンサルティング対応として提供します

 (詳細を見る

超音波プローブの発振方法(制御ノウハウのコンサルティング対応)

超音波プローブの発振方法(制御ノウハウのコンサルティング対応) 製品画像

超音波システム研究所は、
オリジナル技術による、
新しい超音波プローブの制御技術を開発しました。

新しい超音波プローブによる測定システムの応用技術です。
目的に合わせた、専用の超音波プローブを
開発・製作・制御方法をコンサルティング対応します。

圧電素子の特性に関して、弾性波動を考慮した解析で、
各種の振動状態(モード)に基づいた
オリジナル超音波プローブを開発製造対応します。

測定の場合は、
オシロスコープに接続して利用することができます。
発振の場合は、
ファンクションジェネレーターに接続して利用することができます。 

音圧測定データをフィードバック解析することにより
超音波の非線形現象(音響流)やキャビテーション効果を
数値化により確認・評価できるようになります。

超音波プローブは
利用目的を確認した「オーダーメード対応」しています

 (詳細を見る

<樹脂>を利用した超音波技術のコンサルティング対応

<樹脂>を利用した超音波技術のコンサルティング対応 製品画像

超音波システム研究所は、
 <樹脂の音響特性>を利用した
 メガヘルツの超音波伝搬制御技術を開発しました。
 具体的な利用に関してコンサルティング対応しています。

樹脂(テフロン、塩ビ、LCP、・・)の特性は
 一般的に超音波を減衰すると考えられています。
 材質・形状・・の超音波伝搬特性に合わせた各種の設定により、
 メガヘルツの超音波を効率よく伝搬制御することが可能になります。
 詳細は、具体的な対象により異なる設定になるため
 単純に説明できませんが
 樹脂とメガヘルツの超音波による
 洗浄・加工・化学反応・攪拌・・・による
 新しい成果が増えています。

これは、新しい方法および技術です、
 これまでの実施結果から
 樹脂の様々な音響特性は、
 金属・ガラス・・では難しい超音波の非線形伝搬現象を実現しています。


 (詳細を見る

オンデマンド:超音波とファインバブルによる洗浄セミナー

オンデマンド:超音波とファインバブルによる洗浄セミナー 製品画像

プログラム

1).超音波・ファインバブル(マイクロバブル)に関する基礎知識と発生メカニズム
1.超音波の基礎
2.超音波振動の伝搬現象
3.ファインバブル(マイクロバブル)

2).超音波・ファインバブル(マイクロバブル)による洗浄方法とそのメリット
1.洗浄の基礎
2.物理作用・化学作用・相互作用
3.ファインバブルのメリット
 
3).超音波洗浄装置の考え方と導入・開発・改善ノウハウ
1.水槽・振動子の設置方法
2.マイクロバブル発生液循環システム

4).洗浄の具体的適用例と、
  洗浄効果実績のある超音波洗浄装置の具体例


 (詳細を見る

メガヘルツ超音波を利用した、超音波洗浄機の改善コンサルティング

メガヘルツ超音波を利用した、超音波洗浄機の改善コンサルティング 製品画像

超音波システム研究所は、
メガヘルツ超音波発振制御を利用して、
1-700MHz以上の音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 治工具(弾性体:金属・ガラス・樹脂)の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種コンサルティングにおいて提案実施しています。
 (詳細を見る

オリジナル超音波モデルに基づいた制御システムの開発技術

オリジナル超音波モデルに基づいた制御システムの開発技術 製品画像

<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
 D1=客観的知識(学術的論理に裏付けられた理論)
 D2=経験的知識(これまでの結果)
 D3=観測データ(現実の状態)
 からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
 その組織的利用から複数のモデル案を作成する

2)統計的思考法を、
 情報データ群(DS)の構成と、
  それに基づくモデルの提案と検証の繰り返し
  によって情報獲得を実現する思考法と捉える

3)AIC の利用等の評価方法により、
 様々なモデルの比較を行い、最適なモデルを決定する

4)作成したモデルに基づいて、超音波装置・システムを構築する

5)時間と効率を考え、
 以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
   「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
   装置やシステムの具体的打ち合わせに入る
 (詳細を見る

超音波洗浄機の「流れとかたち・コンストラクタル法則」

超音波洗浄機の「流れとかたち・コンストラクタル法則」 製品画像

超音波システム研究所は、
 流れとかたちに関する「コンストラクタル法則」を利用した、
 超音波洗浄技術を開発しました。

<参考>
1)振動について
ロイヤル・インスティテューション 133回「振動」より
機械工学の重要な一分野のほとんどすべてを、
ここに記述してみようと思っている
【著者】リチャード・ビジョップ 
【訳者】中山秀太郎  講談社(1981年 B-471)

2)流れとかたち
 すべてのかたちの進化は
 流れをよくするという「コンストラクタル法則」が支配している!
【著者】  Adrian Bejan   J. Peder Zane
【訳者】 柴田裕之 【解説者】 木村繁男  紀伊國屋書店 (2013年)

3)サイバネティクスはいかにしてうまれたか
【著者】 ノーバート・ウィナー 
【訳者】 鎮目恭夫  みすず書房(1956年)

上記を参考・ヒントにして
 超音波伝播現象における
 「非線形効果」を測定・利用する技術を
 流れをよくするという「コンストラクタル法則」で
 整理することで、超音波洗浄技術にまとめています。
 (詳細を見る

超音波洗浄機の設計・製造・開発コンサルティング

超音波洗浄機の設計・製造・開発コンサルティング 製品画像

超音波システム研究所は、
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。

今回開発した技術により
 水槽の最大長さ:3cm(液量5cc)~
       600cm(液量8000リットル)の
 超音波専用水槽に対して、
 超音波洗浄や表面改質・・・に適した
 超音波の利用効率、キャビテーションと音響流のダイナミック制御、
 対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。

従来の水槽(あるいは振動子)設計や製造においては
 音響特性に対する考慮が十分でないために、
 振動の干渉・減衰による不均一・不安定な事象により
 超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。

この技術は、
 現状の水槽・振動子・・に対しても
 問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
 改善・改良を行うことができます。

ーー提供ノウハウーー
0)装置の設計・製造方法
1)超音波のONOFF制御
2)液循環のONOFF制御
3)最適化ノウハウの提供
4)メガヘルツ超音波の利用方法
 (詳細を見る

メガヘルツの超音波システム(洗浄、攪拌、加工、表面処理・・)

メガヘルツの超音波システム(洗浄、攪拌、加工、表面処理・・) 製品画像

超音波システム研究所は、
超音波機器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHz以上の超音波伝搬状態制御を可能にする
超音波システム技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・溶接・めっき・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 数トンの対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 治工具(弾性体:金属・ガラス・樹脂)の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

 (詳細を見る

ファインバブル(マイクロバブル)を利用した超音波洗浄機

ファインバブル(マイクロバブル)を利用した超音波洗浄機 製品画像

超音波システム研究所は、
 超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
 超音波加工、攪拌、化学反応・・にも利用可能な、
 ファインバブルを利用した超音波洗浄機を開発しました。


推奨システム概要

1:超音波とファインバブルによる表面改質処理を行った
  超音波振動子

2:超音波とファインバブルによる表面改質処理を行った
  超音波専用水槽

3:脱気・ファインバブル(マイクロバブル)発生液循環システム

4:制御装置による、超音波と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム


注意:水槽・振動子・治工具については、エージング処理により
   音響特性の調整対応が可能です

*特徴

超音波専用水槽による効果的な洗浄装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分となります
(通常の水槽を、超音波とファインバブルで表面改質対応します)

洗浄・攪拌・表面改質・・・対象と目的により
超音波(キャビテーション・音響流)を制御します


 (詳細を見る

オリジナル超音波プローブによる、超音波発振システム(20MHz)

オリジナル超音波プローブによる、超音波発振システム(20MHz) 製品画像

超音波システム研究所は、
メガヘルツの超音波の発振制御が容易にできる
「発振システム(20MHz)」を製造販売しています。

システム概要(超音波発振システム(20MHz))

 内容(20MHzタイプ)
  超音波発振プローブ 2本
  ファンクションジェネレータ 1式
  操作説明書 1式(USBメモリー)

 特徴(20MHzタイプ)
  *超音波発振周波数
   仕様 20kHz から 25MHz(あるいは24MHz)
  *出力範囲 5mVp-p~20Vp-p
  *サンプリングレート:200MSa/s(あるいは250MSa/s)

 市販のファンクションジェネレータを利用したシステムです
  目的に応じたファンクションジェネレータをセットにして
  見積価格を提案します

標準参考例
 発振システム20MHz 8万円~

2024. 1 超音波振動の相互作用を測定解析評価する技術を開発
2024. 2 メガヘルツ超音波による表面処理技術を開発
2024. 4 共振現象と非線形現象の最適化技術を開発
 (詳細を見る

取扱会社 音圧測定・解析に基づいた超音波洗浄機の制御技術

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム(超音波テスターNA)製造販売開始 ・・・・ 2022. 7 非線形現象を利用した、洗浄・攪拌技術を開発 2022.12 超音波の非線形現象を評価する技術を開発 2023. 1 共振現象と非線形現象の最適化技術を開発 2023. 2 超音波技術開発に関する西田幾多郎モデルを開発 2023. 6 超音波の非線形振動現象に基づいた最適化技術を開発 2023. 6 超音波プローブの製造方法を開発 2023. 8 抽象数学における、スペクトル系列を利用した、超音波制御技術を開発 2023. 8 スイープ発振とパルス発振の組み合わせ技術を開発 2023. 9 100MHz以上の超音波伝搬制御技術を開発 2023.10 メガヘルツの超音波めっき(特許出願) 2023.11 非線形現象の制御技術を開発 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発

音圧測定・解析に基づいた超音波洗浄機の制御技術へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例