超音波システム研究所
最終更新日:2024-08-02 16:55:33.0
共振現象と非線形現象の最適化技術Ver22.00
基本情報共振現象と非線形現象の最適化技術Ver2
--抽象代数モデルと超音波現象の実験・検討サイクル--
超音波システム研究所は、
オリジナル超音波システム(音圧測定解析・発振制御)による、
超音波伝搬状態の各種解析結果を、
抽象代数モデルに基づいて、超音波振動の相互作用を最適化(注)する、
超音波<ダイナミック制御>技術を開発しました。
注:共振現象(低調波)と非線形現象(高調波)を
論理モデルに基づいて発振制御条件の設定によりコントロールする
これまでの制御技術に対して、
各種伝搬用具を含めた、超音波振動の伝搬経路全体に関する
新しい測定・評価パラメータ(注)により
超音波利用の目的(洗浄、攪拌、加工・・) に合わせた、
最適な制御状態を設定・実施する技術です。
これは具体的な応用がすぐにできる方法・技術です
コンサルティングとして提案・対応しています
(ナノレベルの精密洗浄や攪拌実績が増えています)
注:オリジナル技術(超音波テスター)により
水槽、振動子、対象物、治工具・・・の
伝搬状態に関するダイナミックな変化を測定・解析・評価します。
<樹脂>を利用した超音波技術のコンサルティング対応
超音波システム研究所は、
<樹脂の音響特性>を利用した
メガヘルツの超音波伝搬制御技術を開発しました。
具体的な利用に関してコンサルティング対応しています。
樹脂(テフロン、塩ビ、LCP、・・)の特性は
一般的に超音波を減衰すると考えられています。
材質・形状・・の超音波伝搬特性に合わせた各種の設定により、
メガヘルツの超音波を効率よく伝搬制御することが可能になります。
詳細は、具体的な対象により異なる設定になるため
単純に説明できませんが
樹脂とメガヘルツの超音波による
洗浄・加工・化学反応・攪拌・・・による
新しい成果が増えています。
これは、新しい方法および技術です、
これまでの実施結果から
樹脂の様々な音響特性は、
金属・ガラス・・では難しい超音波の非線形伝搬現象を実現しています。
(詳細を見る)
超音波の伝搬特性ー振動モード・非線形現象・応答特性・相互作用ー
超音波プローブのダイナミック特性を評価する技術
この技術を、コンサルティング提供します
興味のある方はメールでお問い合わせください
各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、5000リッターの水槽でも、
数トンの構造物、工作機械、各種製造ライン・・・・への
超音波刺激による効果を確認しています。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象のコントロール・応用方法として開発しました。
ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件(材質・形状・構造・サイズ・数量・・)・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象として
対処することが重要です
注1:超音波の伝搬特性
超音波プローブの伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波プローブによるスイープ発振制御技術
超音波システム研究所は、
超音波プローブによる
スイープ発振による超音波の伝搬制御技術を開発しました。
超音波発振制御プローブの伝搬特性により、
利用目的と相互作用に合わせた、
各超音波プローブ毎に、スイープ発振の条件設定を行います。
対象物や装置・水槽、治工具・・の振動モードを考慮することで、
システムの振動系に合わせた、スイープ発振条件により、
低周波の共振現象を制御することが、可能になります。
30W程度の出力でも
3000-5000リットルの水槽内に
高い音圧・周波数の超音波振動を伝搬制御することが可能になります。
<<具体例>>
ダイナミックな変化として、低周波の共振現象と同時に、
超音波プローブの1~10MMHzのスイープ発振条件により、
10次、30次、100次・・・高調波の発生を実現が、
精密洗浄やナノレベルの分散・・に応用出来ます。
ポイントは、音圧データの測定・解析に基づいた
システムのダイナミックな振動特性を解析・評価することです。
超音波の伝搬特性
1)振動モード
2)非線形現象
3)応答特性
4)相互作用
(詳細を見る)
メガヘルツの超音波振動を利用した、機械加工技術
超音波システム研究所は、
音圧測定解析装置(超音波テスター)と
メガヘルツの超音波発振制御プローブにより
物(工具・対象物・・・)の
音響特性(振動の応答特性・非線形現象)を利用する、
「超音波発振制御(加工)技術」を開発しました。
この開発した技術により
「超音波の発振・出力制御」による
対象物への非線形振動現象をコントロール可能にした、
超音波のダイナミック制御(バイスペクトルの変化)を実現します。
オリジナルの超音波発振制御プローブにより、
超音波振動の非線形効果として利用・制御可能になりました。
これは、加工・洗浄・表面改質・化学反応の促進・・・に対して
目的に合わせた、効果的な超音波利用(制御)技術です。
刃物(ドリル、リーマー、カッター、ナイフ・・)の音響特性や
加工油・治工具・対象物のサイズ・材質・・に対する相互作用もあり
解析(自己相関・インパルス応答・寄与率・バイスペクトル)は、
複雑ですが、音圧測定データの
解析結果に基づいた各種の最適化が可能になります
(詳細を見る)
<超音波のダイナミック制御システム>
<超音波のダイナミック制御システム>
超音波の伝搬状態をシステムとしてとらえ、解析と制御を行う
多くの超音波利用の目的は、
対象物・対象液に伝搬する超音波の
非線形現象の予測あるいは制御にあります。
しかし、多くの実施例で
キャビテーションによる理論と
実際の違いによる問題が多数指摘されています。
この様な事例に対して
1)障害を除去するものは
時系列で変化する超音波について、
音圧データの統計的データ処理である
<超音波伝搬状態の計測・解析技術>
2)対象に関するデータの解析の結果に基づいて
対象の音響特性を確認する
<対象物の表面弾性波や
対象液の音響流に関する音響特性を検出する技術>
3)特性の確認により
超音波のダイナミック制御の実現に進む
<非線形現象をコントロールする技術
複数の超音波に対するスイープ発振制御>
以上の方法により
超音波を効率的な利用状態に改善し
目的とする超音波の利用を実現した
オリジナル超音波制御システムの実施例が多数あります (詳細を見る)
<統計的な考え方>を利用した、超音波の測定・解析・評価技術
超音波システム研究所は、
超音波利用に関して、
<統計的な考え方>を利用した
効果的な「測定・解析・評価方法」に関する技術を開発しています。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
科学の中の統計学 赤池 弘次 (編集)より
<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。
正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。
<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )
1)先入観や経験は正しくないことがあると考える必要があります
2)モデルの本質を考えるためには、
圏論を利用することが有効だと考えています
(詳細を見る)
超音波モデルに基づいた制御システムの開発技術コンサルティング
超音波システム研究所は、
超音波利用に関して、
<統計的な考え方>に基づいて、抽象代数学を利用した
効果的な「超音波発振制御システム」を開発しています。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」
<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。
正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の音圧測定解析システム(オシロスコープ10MHzタイプ)
超音波システム研究所(所在地:東京都八王子市)は、
超音波の測定解析が容易にできる
超音波テスターNA(オシロスコープ100MHzタイプ)を開発しました
特徴(標準的な仕様)
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 1MHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて発振・測定を行います。
測定したデータについて、
位置・状態・弾性波動を考慮した解析で、
各種の音響性能として検出します。
(詳細を見る)
超音波プローブの特性評価技術
超音波システム研究所は、
対象物の表面を伝搬する超音波データの解析実績から
メガヘルツの超音波発振による、新しい超音波特性評価技術を開発しました。
超音波プローブの発振制御による
「音圧・振動」測定・解析技術を応用した方法です。
目的(対象物の表面を伝搬する振動モード)に合わせた
超音波プローブの開発対応による、
コンサルティング・評価技術の説明対応を行っています。
新しい超音波発振制御技術の応用です。
対象物の音響特性に合わせた、
メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
対象物の表面状態に関する新しい特徴を検出することが可能です。
特に、発振・受信の組み合わせによる
応答特性を利用した
基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
超音波振動の新しい評価パラメータとなる基本技術です。
表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
測定・解析・評価に基づいて
論理モデルを構成・修正しながら検討することで
目的(評価)に合わせた効果的な利用を可能にしました。
(詳細を見る)
超音波システム(製造販売・コンサルティング対応)
超音波システム研究所は、
オリジナル製品:超音波システム(音圧測定解析、発振制御)による
以下の対応を行っています
1)超音波システム(音圧測定解析、発振制御)の製造販売
2)超音波利用技術に関するコンサルティング対応
<<製造販売>>
1)オリジナル製品:超音波システム(音圧測定解析、発振制御)
システム概要(標準システム)
::超音波テスターNA 10MHzタイプ
::発振システム20MHzタイプ
価格 281,050円(税込:消費税10%)
2)脱気ファインバブル発生液循環装置
装置概要
::マグネットポンプ
(イワキ マグネットポンプMDシリーズ MD-70RZ)
::タイマー
::ホース他
価格 99,000円(税込:消費税10%)
3)その他(出張対応:納品・設置・操作説明・・・)
コンサルティング費用
(出張条件・・・に合わせた見積もりを提案します)
(詳細を見る)
メガヘルツの超音波洗浄器(コンサルティング対応)
超音波システム研究所は、
超音波洗浄器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
超音波洗浄器(水槽表面)の表面残留応力緩和・均一化処理
超音波システム研究所は、
超音波の伝搬状態に関する、計測・解析・制御技術を、
対象物の音響特性として解析・応用することで、
超音波の非線形伝搬状態を制御可能にしました。
その結果、効率良く、
部品の表面残留応力を緩和して、表面全体を均一化する技術を開発しました。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うとともに
各種表面処理の均一化が実現しています。
特に、超音波の伝搬状態を
対象物のガイド波(表面弾性波・・)を考慮した設定・制御により、
対象物への効果的なダイナミックに変化する
非線形現象を含んだ一定の範囲の刺激として実現させる
制御方法・治工具・システム開発・・・具体的な方法・技術を開発しました。
金属部品、樹脂部品、粉体部材、・・・の各種の表面に対して
幅広い効果を確認しています。
この技術を
コンサルティング対応として提供しています
(詳細を見る)
メガヘルツの超音波洗浄器(利用技術のコンサルティング対応)
超音波システム研究所は、
超音波洗浄器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
(詳細を見る)
超音波の測定解析と発振制御が容易にできる、超音波システム
超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」と
超音波の発振制御が容易にできる
「超音波発振システム(20MHz)」
をセットにしたシステムを製造販売しています。
利用目的(価格・性能:洗浄・加工・攪拌・検査・・)に合わせた
システム構成(オーダーメードの超音波プローブ)を提案しています
オリジナル製品:
超音波システム(音圧測定解析、発振制御 10MHzタイプ)
型番:US-2022xxxx
システム概要(標準システム)
::超音波テスターNA 10MHzタイプ
::発振システム20MHzタイプ
超音波プローブ:概略仕様
測定範囲 0.01Hz~100MHz
発振範囲 1kHz~25MHz
伝搬範囲 1kHz~900MHz以上
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
超音波の伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出
(詳細を見る)
超音波洗浄機の製造・開発コンサルティング
超音波システム研究所は、
超音波の制御を効率良く行うことができる
<<脱気ファインバブル(マイクロバブル)発生液循環装置>>による
超音波洗浄機の製造・開発方法・・をコンサルティング対応しています。
超音波洗浄機(脱気ファインバブル発生液循環システム)
--超音波洗浄システム KT0600K--
1)洗浄槽
材質 :SUS304(t= 3.0mm )
寸法(内寸):W530×D530×H370mm
2)液循環
脱気ファインバブル発生液循環システム
公称流量 12-30L/MIN
3)超音波(電源:AC 100V)MU-300
振動子サイズ 260*150*90mm
発振機サイズ 320*420*145mm
周波数 1) 28kHz 出力 300W(MAX)
周波数 2) 40kHz 出力 300W(MAX)
周波数 3) 72kHz 出力 300W(MAX)
(詳細を見る)
音圧測定解析に基づいた、超音波システム開発コンサルティング2
下装置を利用した、超音波システム開発をコンサルティング対応します
<<脱気ファインバブル(マイクロバブル)発生液循環装置>>
1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です
3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。
5)上記の脱気ファインバブル(マイクロバブル)発生液循環装置に対して
超音波を照射すると
ファインバブル(マイクロバブル)を超音波が分散・粉砕して
ファインバブル(マイクロバブル)の測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です。
(詳細を見る)
取扱会社 共振現象と非線形現象の最適化技術Ver2
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発
共振現象と非線形現象の最適化技術Ver2へのお問い合わせ
お問い合わせ内容をご記入ください。