超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-04-07 13:47:35.0

  •  
  • カタログ発行日:2024/3/17

参考書籍:超音波技術ーー1)超音波工学と応用技術 ベ.ア.アグラナート 2)超音波入門 エリ・デ・ローゼンベルクーー1.00

基本情報参考書籍:超音波技術ーー1)超音波工学と応用技術 ベ.ア.アグラナート 2)超音波入門 エリ・デ・ローゼンベルクーー

超音波の実験検討(音圧測定解析・発振制御)を行うための参考書籍

参考書籍:超音波技術

1)超音波工学と応用技術
ベ.ア.アグラナート (他共著),青山 忠明 (訳),遠藤 敬一 (訳)
発行年月:1991  出版社: 日ソ通信社 

主要内容
衝撃波の形成、音響流、キャビテーション、・・
超音波場内の湿式冶金プロセスの強化
晶出過程にある金属の超音波処理の基礎
超音波清浄
高純度金属及び半導体の作製時の超音波の採用
・・・

2)超音波入門 (科学普及新書)
エリ・デ・ローゼンベルク 著, 上田光隆 訳
発行年月:1967  出版社:東京図書

目次
第1章 聞こえない音
第2章 超音波の発振
第3章 観察と検査をする超音波
第4章 超音波写真
第5章 物質に対する超音波の作用


<統計的な考え方>を利用した、超音波の測定・解析・評価技術

<統計的な考え方>を利用した、超音波の測定・解析・評価技術 製品画像

超音波システム研究所は、
 超音波利用に関して、
 <統計的な考え方>を利用した
 効果的な「測定・解析・評価方法」に関する技術を開発しています。

<統計的な考え方について>
 統計数理には、抽象的な性格と具体的な性格の二面があり、
 具体的なものとの接触を通じて
 抽象的な考えあるいは方法が発展させられていく、
 これが統計数理の特質である
  科学の中の統計学 赤池 弘次 (編集)より

<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。

正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。

<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )

1)先入観や経験は正しくないことがあると考える必要があります

2)モデルの本質を考えるためには、
 圏論を利用することが有効だと考えています
 (詳細を見る

超音波の測定・解析が容易にできる、超音波テスターNA

超音波の測定・解析が容易にできる、超音波テスターNA 製品画像

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置・状態・弾性波動を考慮した解析で、
 各種の音響性能として検出します。

特徴(仕様)
  *測定(解析)周波数の範囲
   仕様 0.1Hz から 200MHz
  *超音波発振
   仕様 1Hz から 1MHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数


 (詳細を見る

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング 製品画像

超音波専用水槽(オリジナル製造方法)による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
複数の超音波と
脱気ファインバブル発生液循環装置を
音圧測定解析に基づいて発振制御します

様々な、組み合わせと
 使用(制御)方法を提案しています

ポイントは
目的の対象に合わせた超音波伝搬状態を実現させる
専用水槽内の「溶存酸素濃度分布」と「液循環」です

<<脱気ファインバブル(マイクロバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

 (詳細を見る

オリジナル超音波モデルに基づいた制御システムの開発技術

オリジナル超音波モデルに基づいた制御システムの開発技術 製品画像

<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
 D1=客観的知識(学術的論理に裏付けられた理論)
 D2=経験的知識(これまでの結果)
 D3=観測データ(現実の状態)
 からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
 その組織的利用から複数のモデル案を作成する

2)統計的思考法を、
 情報データ群(DS)の構成と、
  それに基づくモデルの提案と検証の繰り返し
  によって情報獲得を実現する思考法と捉える

3)AIC の利用等の評価方法により、
 様々なモデルの比較を行い、最適なモデルを決定する

4)作成したモデルに基づいて、超音波装置・システムを構築する

5)時間と効率を考え、
 以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
   「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
   装置やシステムの具体的打ち合わせに入る
 (詳細を見る

超音波洗浄機の設計・製造・開発コンサルティング

超音波洗浄機の設計・製造・開発コンサルティング 製品画像

超音波システム研究所は、
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。

今回開発した技術により
 水槽の最大長さ:3cm(液量5cc)~
       600cm(液量8000リットル)の
 超音波専用水槽に対して、
 超音波洗浄や表面改質・・・に適した
 超音波の利用効率、キャビテーションと音響流のダイナミック制御、
 対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。

従来の水槽(あるいは振動子)設計や製造においては
 音響特性に対する考慮が十分でないために、
 振動の干渉・減衰による不均一・不安定な事象により
 超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。

この技術は、
 現状の水槽・振動子・・に対しても
 問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
 改善・改良を行うことができます。

ーー提供ノウハウーー
0)装置の設計・製造方法
1)超音波のONOFF制御
2)液循環のONOFF制御
3)最適化ノウハウの提供
4)メガヘルツ超音波の利用方法
 (詳細を見る

音圧データ解析による、超音波のシステム技術(コンサルティング)

音圧データ解析による、超音波のシステム技術(コンサルティング) 製品画像

超音波のシステム技術

1:専用水槽の開発技術
2:超音波振動子の改良技術
3:超音波伝搬状態の測定技術
4:超音波(音響流)制御技術

 上記に関する システム技術 を提供しています。

目的に合わせた超音波の制御を可能にする技術です。

 *超音波振動子改良技術ノウハウ・・・*

 *超音波水槽の設計技術ノウハウ・・・*

 *超音波伝搬状態の測定技術ノウハウ・・・*

 *超音波(音響流)の制御技術ノウハウ・・・*

    以上を提供させていただきます

詳細は 超音波システム研究所 にメールでお問い合わせください
 (詳細を見る

超音波伝搬現象の分類に基づいた、超音波プローブの製造技術

超音波伝搬現象の分類に基づいた、超音波プローブの製造技術 製品画像

超音波システム研究所は、
超音波伝搬現象の分類に基づいた、
700MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を開発しました。

目的に合わせた、
 オリジナル超音波発振制御プローブを製造開発が可能です。

ポイントは、超音波プローブの超音波伝搬特性の確認です。
超音波のダイナミックな変化に対する、応答特性が最も重要です。
この特性により、高調波の発生可能範囲が決定します。
現状では、以下の範囲に対して、製造対応可能となっています。

メガヘルツの超音波発振制御プローブ:概略仕様
 測定範囲 0.01Hz~100MHz
 発振範囲 0.1kHz~25MHz
 (伝搬周波数範囲 1kHz~700MHz以上 解析確認)
 材質 ステンレス、LCP樹脂、シリコン、テフロン・・・
 発振機器 例 ファンクションジェネレータ

<材質・形状・構造・・・による音響特性>を
 把握(測定・解析・評価)することで、
 目的に合わせた超音波の伝搬状態を実現します

この技術を、コンサルティング提供します
 興味のある方はメールでお問い合わせください
 (詳細を見る

超音波の非線形現象による、ナノレベルの攪拌技術

超音波の非線形現象による、ナノレベルの攪拌技術 製品画像

超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用した
 効果的な攪拌(乳化・分散・粉砕)技術を開発しました。

この技術は
 表面検査による間接容器、超音波水槽、その他事項具・・の
 超音波伝搬特徴(解析結果)を利用(評価)して
 超音波(キャビテーション・音響流)を制御します。

さらに、
 具体的な対象物の構造・材質・音響特性に合わせ、
 効果的な超音波(キャビテーション・音響流)伝搬状態を、
 ガラス容器・超音波・対象物・・の相互作用に合わせて、
 超音波の発振制御により実現します。

特に、
 音響流制御による、高調波のダイナミック特性により
 ナノレベルの対応が実現しています

金属粉末をナノサイズに分散する事例から応用発展させました。

2023.11 非線形現象を制御する超音波発振制御技術を開発
2024. 1 超音波振動の相互作用を測定解析評価する技術を開発
2024. 2 メガヘルツ超音波による表面処理技術を開発
2024. 4 共振現象と非線形現象の最適化技術を開発 
 (詳細を見る

取扱会社 参考書籍:超音波技術ーー1)超音波工学と応用技術 ベ.ア.アグラナート 2)超音波入門 エリ・デ・ローゼンベルクーー

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発

参考書籍:超音波技術ーー1)超音波工学と応用技術 ベ.ア.アグラナート 2)超音波入門 エリ・デ・ローゼンベルクーーへのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例