超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-09-27 11:06:12.0

  •  
  • カタログ発行日:2024/9/27

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ (曲面対応)5.00

基本情報ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ (曲面対応)

目的に合わせた、オリジナル超音波プローブ(振動・音圧測定用、発振制御用、両用タイプ)の製造開発技術

超音波システム研究所は、
ポリイミドフィルムに鉄めっきを行った部材を利用した
超音波発振制御プローブを開発しました。

この技術を、応用して、各種曲面への
「超音波・振動の計測、伝搬制御・・・」についてコンサルティング対応しています。

超音波プローブ:概略仕様
測定範囲 0.01Hz~100MHz
発振範囲 1kHz~25MHz
伝搬範囲 1kHz~900MHz以上
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ

<対象物・設置状態・・・の音響特性>を把握することで
表面弾性波(伝搬状態)のダイナミック制御を実現しました。
各種目的(洗浄、攪拌・・)に合わせた伝搬状態を実現します

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

超音波専用水槽(設計・製造・開発・コンサルティング対応)

超音波専用水槽(設計・製造・開発・コンサルティング対応) 製品画像

超音波専用水槽を開発

超音波システム研究所は、
超音波の伝搬状態に関する計測技術を応用して、
超音波専用水槽を開発いたしました。

今回開発した超音波専用水槽を、
超音波洗浄や表面改質・・・に用いた結果、
超音波の利用効率以外にも、
キャビテーションや加速度の
伝搬状態の制御が簡単に行えるようになりました。

これは、全く新しい水槽の製造技術(注)と
表面処理技術であり、非常に大きな成果であることが、
状態を測定・解析することで確認しています。

注:オリジナル設計・製造・調整方法です

このの方法ならびに技術ノウハウを
コンサルティング事業として、対応しています。


超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答
 mulnos:パワー寄与率
 (詳細を見る

一つのチャンネルから二種類の超音波プローブを発振制御するシステム

一つのチャンネルから二種類の超音波プローブを発振制御するシステム 製品画像

超音波システム研究所は、
ファンクションジェネレータの一つの発振チャンネルから
 同時に2種類の超音波プローブを発振することで発生する
 相互作用を利用して
 超音波の非線形現象(注)をコントロールする技術を開発しました。

注:非線形(共振)現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
 効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波のダイナミックな変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた
 低い周波数の高い音圧レベルの伝搬状態を実現します。 (詳細を見る

超音波の音圧測定解析システムの製造技術を提供します

超音波の音圧測定解析システムの製造技術を提供します 製品画像

超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」を製造販売しています。
このシステムの(ノウハウを含めた)
 製造技術・データの解析評価技術を提供します。

システム概要(推奨システム::超音波テスターNA)

内容
 超音波洗浄機の音圧測定専用プローブ 1本
 超音波測定汎用プローブ  1本
 オシロスコープセット 1式
 解析ソフト・説明書・各種インストールセット 1式

特徴
 *測定(解析)周波数の範囲
  仕様 0.1Hz から 10MHz
 *超音波発振
  仕様 1Hz から 100kHz
 *表面の振動計測が可能
 *24時間の連続測定が可能
 *任意の2点を同時測定
 *測定結果をグラフで表示
 *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置や状態と、弾性波動を考慮した解析で、
 各種の音響性能として検出します。

 (詳細を見る

最大25MHzの超音波発振制御システム(製造販売)

最大25MHzの超音波発振制御システム(製造販売) 製品画像

超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。

超音波を利用した
 洗浄、改質、検査、・・・への新しい応用システムです。

低周波の振動・音との組み合わせ制御による応用も可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 応用システム技術として開発しました。

ポイントは
 表面弾性波の利用方法です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象(注2、3)として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

注2:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

注3:過渡超音応力波

 (詳細を見る

脱気ファインバブル発生液循環システムのコンサルティング

脱気ファインバブル発生液循環システムのコンサルティング 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム)を開発しました。

この技術を利用した
脱気マイクロバブル発生液循環システムの
コンサルティングを行っています。

複雑に変化する超音波の利用状態を、
 安定した状態で利用(制御)するために
 現場にある、具体的な水槽に対して
 脱気マイクロバブル発生液循環システムを追加セットする
 コンサルティングを行います。

1:原理の説明
2:洗浄機(装置)に合わせた具体的な提案
3:ノウハウ説明
4:確認方法、調整方法、メンテナンス方法の説明

ファインバブルとメガヘルツ超音波による非線形振動制御技術開発

この技術について
「超音波を利用した振動測定技術」としてコンサルティング対応しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

オリジナル超音波プローブを利用した、超音波発振システム

オリジナル超音波プローブを利用した、超音波発振システム 製品画像

超音波システム研究所は、
 オリジナル超音波システム(音圧測定解析、発振制御)により、
 対象物に伝搬する表面弾性波(超音波振動)の、
 非線形現象をコントロールする技術を開発しました。

<<超音波の非線形振動現象をコントロールする技術>>

1)ファンクションジェネレータによる発振制御を
 対象物の音響特性に合わせて、
 発振出力、波形、変化・・・させる制御設定技術

2)超音波発振電圧の変化を、制御可能にする
 超音波発振制御プローブの、発振面の調整を含めた製造技術

3)100メガヘルツの超音波振動変化を、計測可能にする
 超音波測定プローブの、発振面の調整を含めた製造技術

4)スイープ発振条件の最適化技術

上記の技術を利用して
 目的に合わせた
 超音波の伝搬状態をコントロール(最適化)します。

注:対象物の音響特性と超音波の発振制御による相互作用について
 非線形現象に関する音圧データの解析評価に基づいて
 超音波のダイナミック制御・・・・を行います
 (超音波テスターで、音圧の測定・解析・確認・評価を行っています)

 (詳細を見る

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術 製品画像

超音波システム研究所は、
500Hzから500MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。

超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。

各種部材の音響特性の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
 (詳細を見る

2台のファンクションジェネレータを利用した、超音波制御技術

2台のファンクションジェネレータを利用した、超音波制御技術 製品画像

超音波システム研究所は、
2台のファンクションジェネレータを利用する
全く新しい超音波のダイナミック制御技術を開発しました。

2種類の異なる波形による、異なるタイプの(スイープ)発振により、
超音波の非線形現象と共振現象をコントロールする技術を実現します。

この技術を応用して、
部品の表面残留応力を緩和する、実用的な方法、・・・
様々な応用技術を開発し、コンサルティング対応しています。

標準設定
1)3MHz~20MHzのスイープ発振制御1
2)60kHz~13MHzのスイープ発振制御2
3)42kHz 35W(超音波洗浄器)
 による、超音波のダイナミック制御
 (ダイナミック変動型の超音波伝搬制御を実現)

注:超音波洗浄器の水槽表面に関して、
 超音波発振制御プローブと
 脱気ファインバブル発生液循環装置により
 表面残留応力緩和・均一化処理を行っています。
 均一化の効果として、
 200MHz以上の高調波による超音波制御が実現しています。

 (詳細を見る

小型ポンプと、超音波プローブによる超音波制御技術

小型ポンプと、超音波プローブによる超音波制御技術 製品画像

超音波システム研究所は、
小型ポンプを利用した液循環により
超音波の伝搬状態に関して、非線形現象をダイナミックに制御する
「超音波制御技術」を開発しました。

超音波テスターによる解析で、非線形現象を評価します。
超音波(超音波洗浄機、超音波プローブ、・・)の複雑な変化を、
超音波発振と超音波受信による音圧の時系列データ解析で、各種の相互作用を確認します。
相互作用の確認に基づいて、超音波プローブによる発振制御条件を最適化する事で、
目的に合わせた、ダイナミックな超音波コントロールシステムを実現します。

実用的には、超音波洗浄の場合、
現状の液循環装置について、ON/OFF制御(あるいは流量・流速・・・の制御)を
装置の設置状態、対象物を含めた表面弾性波に関する、超音波の伝搬特性を考慮して
超音波の出力・発振周波数・制御条件・・・を最適化します。

特に、ポンプの振動特性を利用して、
液体と気体を交互に循環させる・・・により、
新しい超音波・マイクロバブルの非線形効果を実現しています。
 (詳細を見る

超音波の発振制御システム(超音波システム研究所)

超音波の発振制御システム(超音波システム研究所) 製品画像

超音波システム研究所は、
 オリジナル超音波システム(音圧測定解析、発振制御)により、
 対象物に伝搬する表面弾性波(超音波振動)の、
 非線形現象をコントロールする技術を開発しました。

<<超音波の非線形現象をコントロールする技術>>

1)ファンクションジェネレータによる発振制御を
 対象物の音響特性に合わせて、
 発振出力、波形、変化・・・させる制御設定技術

2)超音波発振電圧の変化を、制御可能にする
 超音波発振制御プローブの、発振面の調整を含めた製造技術

3)100メガヘルツの超音波振動変化を、計測可能にする
 超音波測定プローブの、発振面の調整を含めた製造技術

4)スイープ発振条件の最適化技術

上記の技術を利用して
 目的に合わせた
 超音波の伝搬状態をコントロール(最適化)します。

注:対象物の音響特性と超音波の発振制御による相互作用について
 非線形現象に関する音圧データの解析評価に基づいて
 超音波のダイナミック制御・・・・を行います
 (超音波テスターで、音圧の測定・解析・確認・評価を行っています)

 (詳細を見る

超音波の非線形現象制御による化学反応制御装置

超音波の非線形現象制御による化学反応制御装置 製品画像

超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用して
「超音波による化学反応を制御する技術」を開発しました。

この技術は
 容器の相互作用を測定確認することで
 メガヘルツの超音波発振プローブによる超音波制御(注)により
 目的に合わせた、超音波(キャビテーション・音響流)を制御します。

注:超音波制御
2種類の非線形共振型超音波発振プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧の共振現象と、
高調波の発生現象(非線形現象)による、
30MHz以上の高周波伝搬状態を、ダイナミック制御します。

注:超音波制御「精密洗浄事例」
 スイープ発振 70kHz~15MHz 15W
 パルス発振  13MHz 8W

注:超音波制御「ナノレベルの攪拌事例」
 スイープ発振 880kHz~22MHz 12W
 パルス発振  14MHz 10W

特に、
 音響流制御による、高調波のダイナミック特性により
 ナノレベルの反応・対応が実現しています

 (詳細を見る

メガヘルツの超音波発振による、新しい表面検査技術

メガヘルツの超音波発振による、新しい表面検査技術 製品画像

超音波システム研究所は、
 対象物の表面を伝搬する超音波データの解析実績から
 メガヘルツの超音波発振による、新しい部品検査技術を開発しました。

オリジナル超音波プローブの発振制御による
 「音圧・振動」測定・解析技術を応用した方法です。

目的(対象物の表面を伝搬する振動モード)に合わせた
 超音波プローブの開発対応による、
 コンサルティング・超音波評価技術の説明対応を行っています。

新しい超音波発振制御技術の応用です。
 対象物の音響特性に合わせた、
 メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
 対象物の表面状態に関する新しい特徴を検出することが可能です。

特に、発振・受信の組み合わせによる
 応答特性を利用した
 基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
 超音波振動の新しい評価パラメータとなる基本技術です。

表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
 測定・解析・評価に基づいて
 論理モデルを構成・修正しながら検討することで
 目的(評価)に合わせた効果的な利用を可能にしました。
 (詳細を見る

超音波プローブの特性評価技術

超音波プローブの特性評価技術 製品画像

超音波システム研究所は、
 対象物の表面を伝搬する超音波データの解析実績から
 メガヘルツの超音波発振による、新しい超音波特性評価技術を開発しました。

超音波プローブの発振制御による
 「音圧・振動」測定・解析技術を応用した方法です。

目的(対象物の表面を伝搬する振動モード)に合わせた
 超音波プローブの開発対応による、
 コンサルティング・評価技術の説明対応を行っています。

新しい超音波発振制御技術の応用です。
 対象物の音響特性に合わせた、
 メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
 対象物の表面状態に関する新しい特徴を検出することが可能です。

特に、発振・受信の組み合わせによる
 応答特性を利用した
 基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
 超音波振動の新しい評価パラメータとなる基本技術です。

表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
 測定・解析・評価に基づいて
 論理モデルを構成・修正しながら検討することで
 目的(評価)に合わせた効果的な利用を可能にしました。

 (詳細を見る

音圧測定解析に基づいた、超音波プローブの非線形発振制御技術

音圧測定解析に基づいた、超音波プローブの非線形発振制御技術 製品画像

超音波システム研究所は、
ファンクションジェネレータの一つの発振チャンネルから
 同時に2種類の超音波プローブを発振することで発生する
 相互作用を利用して
 超音波の非線形現象(注)をコントロールする技術を開発しました。

注:非線形(共振)現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
 効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波のダイナミックな変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた
 低い周波数の高い音圧レベルの伝搬状態を実現します。

 (詳細を見る

超音波伝搬現象の分類による、超音波の非線形スイープ発振制御技術

超音波伝搬現象の分類による、超音波の非線形スイープ発振制御技術 製品画像

超音波システム研究所は、
 超音波伝搬状態の測定・解析により、
 超音波振動が伝搬する現象に関する分類方法を開発しました。

この分類に基づいて、非線形共振型超音波発振プローブを利用した、
 超音波の非線形スイープ発振制御技術を開発しました。

この超音波のスイープ発振制御技術は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 線形・非線形の共振効果を目的に合わせてコントロールします。

これまでの実験・データ測定解析から
 効果的な利用方法を
 以下のような
 4つの推奨制御に分類することができました。
 1:2種類のスイープ発振制御(線形型)
 2:3種類のスイープ発振制御(非線形型)
 3:4種類のスイープ発振制御(ミックス型)
 4:上記の組み合わせによるダイナミック制御(変動型)

さらに変動型は、スイープ発振条件により、以下のような
 3つの制御タイプに分類することができました。
 1:線形変動制御型
 2:非線形変動制御型
 3:ミックス変動制御型(ダイナミック変動型)
 (詳細を見る

メガヘルツ超音波の発振制御による、表面残留応力を緩和処理する技術

メガヘルツ超音波の発振制御による、表面残留応力を緩和処理する技術 製品画像

超音波システム研究所は、
1)超音波プローブの製造技術
2)超音波伝搬状態の評価技術
3)超音波を利用した表面検査技術
以上を応用して、表面残留応力の測定・解析・評価方法を開発してきました。
多数の実績から、超音波の利用技術として様々な応用が可能であると考え、
関連技術を含め公開しています。

具体例
表面処理ノウハウ:標準的な設定
出力 13-15V
矩形波 Duty47.1%
スイープ範囲 500kHz~13MHz 2秒

強度が低い対象(あるいは長時間の処理)に対する設定
出力 1-3V
矩形波 Duty47.1%
スイープ範囲 300kHz~3MHz 1秒
(あるいは 100kHz~5MHz 1秒)

注:対象物の超音波伝搬特性と、
 ファンクションジェネレーターの発振特性により
 発振条件は大きく変わります

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

メガヘルツ超音波発振制御による加工方法の提案

メガヘルツ超音波発振制御による加工方法の提案 製品画像

超音波システム研究所は、
オリジナル製品:超音波システム(音圧測定解析、発振制御)による
超音波加工技術のコンサルティング対応を行っています。

現状の超音波加工に対して
音圧測定・解析に基づいた、超音波追加・改良方法を提案・実施します。

具体的には、
超音波の測定解析が容易にできる
 「オリジナル製品:超音波テスターNA(推奨タイプ)」による
 加工機械・・の測定・確認により
 超音波追加について打ち合わせ相談します。

超音波追加に合わせて
超音波の発振制御が容易にできる
「オリジナル製品:超音波発振システム(1MHz、20MHz)」
 の利用を提案します。
 (詳細を見る

音圧測定解析に基づいた、超音波システム開発コンサルティング2

音圧測定解析に基づいた、超音波システム開発コンサルティング2 製品画像

下装置を利用した、超音波システム開発をコンサルティング対応します

<<脱気ファインバブル(マイクロバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

5)上記の脱気ファインバブル(マイクロバブル)発生液循環装置に対して
超音波を照射すると
ファインバブル(マイクロバブル)を超音波が分散・粉砕して
ファインバブル(マイクロバブル)の測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなります
上記の状態が、超音波を安定して制御可能にした状態です。
 (詳細を見る

スイープ発振とパルス発振による、超音波洗浄器の利用技術を開発

スイープ発振とパルス発振による、超音波洗浄器の利用技術を開発 製品画像

超音波システム研究所は、
超音波洗浄器に関して、
ファンクションジェネレータと超音波プローブを応用することで、
100MHz以上の超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 対象物へ100MHz以上の超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 対象物の超音波伝搬特性を確認することで、
 オリジナル非線形共振現象の制御方法として
 スイープ発振・パルス発振に関する、
 システムの振動モードへの最適化として、
 超音波発振制御プローブの発振条件を設定することが重要です。

様々な分野への利用が可能になると考え
 各種コンサルティングにおいて提案しています。


 (詳細を見る

複数のスイープ発振を組み合わせた超音波の発振制御技術

複数のスイープ発振を組み合わせた超音波の発振制御技術 製品画像

超音波システム研究所は、
 超音波振動が伝搬する現象に関する分類方法を開発しました。

この分類に基づいて、非線形共振型超音波発振プローブを利用した、
 超音波の非線形スイープ発振制御技術を開発しました。

この超音波のスイープ発振制御技術方法は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 線形・非線形の共振効果を目的に合わせてコントロールします。

これまでの実験・データ測定解析から
 効果的な利用方法を
 以下のような
 4つの推奨制御に分類することができました。

 1:2種類のスイープ発振制御(線形型)
 2:3種類のスイープ発振制御(非線形型)
 3:4種類のスイープ発振制御(ミックス型)
 4:上記の組み合わせによるダイナミック制御(変動型)

さらに変動型は、スイープ発振条件により、以下のような
 3つの制御タイプに分類することができました。
 1:線形変動制御型
 2:非線形変動制御型
 3:ミックス変動制御型(ダイナミック変動型)

 (詳細を見る

超音波超音波洗浄機の製造・開発・コンサルティング対応

超音波超音波洗浄機の製造・開発・コンサルティング対応 製品画像

超音波システム研究所は、
 超音波制御が簡単にできる、標準タイプの超音波装置に関して
 標準サイズからの変更による超音波伝搬状態の影響に関する
 測定・解析・評価技術を開発しました。
この技術を応用して、
 目的に合わせた、水槽サイズの超音波システムを
 製造・開発・コンサルティング対応します。

装置概要

*超音波システム(超音波洗浄機)

1:超音波
2:超音波水槽
3:循環ポンプ(脱気・マイクロバブル発生液循環システム)
4:タイマー


超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

超音波の音圧測定プローブを製造・開発する技術を提供

超音波の音圧測定プローブを製造・開発する技術を提供 製品画像

超音波システム研究所は、
0.1Hz~900MHzの超音波伝搬状態を測定可能にする
超音波プローブ・音圧測定解析システムの製造・開発技術を、
コンサルティング提供します。

超音波の音圧測定解析システム(超音波テスター:標準システム)
1.内容
  超音波洗浄機の音圧測定専用プローブ 1本
  超音波測定汎用プローブ  1本
  オシロスコープセット 1式
  解析ソフト・説明書・各種インストールセット 1式

2.特徴(標準的な仕様の場合)

  *測定(解析)周波数の範囲
   仕様 0.1Hz から 10MHz
  *超音波発振
   仕様 1Hz から 100kHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置や状態と、弾性波動を考慮した解析で、
 各種の音響性能として検出します。
 (詳細を見る

超音波とファインバブル(マイクロバブル)による洗浄技術

超音波とファインバブル(マイクロバブル)による洗浄技術 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
対象(弾性体、液体、気体)を伝搬する超音波振動の
ダイナミック特性を解析・評価する技術により、
洗浄物・治工具・超音波振動子・水槽・液循環・・に関する、
相互作用を<目的に合わせて最適化>する技術を開発しました。

超音波発振制御プローブ、超音波テスターを利用したこれまでの
発振・計測・解析により
各種の関係性・応答特性(注)を検討することで
 超音波利用に関する出力の最適化技術として開発しました。

注:パワー寄与率、インパルス応答・・・

超音波の測定・解析に関して
 サンプリング時間・・・の設定は
 オリジナルのシミュレーション技術を利用しています

この技術を
 超音波システム(洗浄、攪拌、加工・・・)の最適化技術として
 コンサルティング対応しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

オンデマンド:超音波とファインバブルによる洗浄セミナー

オンデマンド:超音波とファインバブルによる洗浄セミナー 製品画像

プログラム

1).超音波・ファインバブル(マイクロバブル)に関する基礎知識と発生メカニズム
1.超音波の基礎
2.超音波振動の伝搬現象
3.ファインバブル(マイクロバブル)

2).超音波・ファインバブル(マイクロバブル)による洗浄方法とそのメリット
1.洗浄の基礎
2.物理作用・化学作用・相互作用
3.ファインバブルのメリット
 
3).超音波洗浄装置の考え方と導入・開発・改善ノウハウ
1.水槽・振動子の設置方法
2.マイクロバブル発生液循環システム

4).洗浄の具体的適用例と、
  洗浄効果実績のある超音波洗浄装置の具体例


 (詳細を見る

表面弾性波の伝搬制御に基づいた、超音波伝搬用具の開発・製造技術

表面弾性波の伝搬制御に基づいた、超音波伝搬用具の開発・製造技術 製品画像

超音波システム研究所は、
500Hzから900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
新しい超音波伝搬用具を開発しました。
この技術を、コンサルティング対応します。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
 発振制御により、音圧レベル、周波数、ダイナミック特性について
 目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。

各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、3000リッターの水槽でも、
 数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
 (詳細を見る

メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整)

メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整) 製品画像

超音波システム研究所は、
オリジナル製品(超音波システム)を利用した全く新しい、
 <<振動をコントロールする技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析・発振制御技術について、
 超音波の非線形現象に関する「解析・評価」に基づいた、
 メガヘルツ超音波の発振制御を行います。

ものの表面を伝搬する超音波のダイナミック特性を
 測定・解析・評価したデータの蓄積から、
 低周波(0.1Hz)~高周波(900MHz以上)の振動状態を
 <測定・解析・評価>できる技術を応用しています。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
製造装置・システム全体の複雑な振動状態、・・・
 に関して、新しい振動測定解析に基づいた対策が可能になりました。

これは、新しい方法および技術です、
 これまでの実施結果から
 様々な応用事例が発展しています。

特に、非常に低い周波数の振動や
 不規則に変動する振動に対しても計測・対応が可能です。 
 (詳細を見る

超音波めっき技術(日本バレル工業株式会社)

超音波めっき技術(日本バレル工業株式会社) 製品画像

超音波システム研究所は、
日本バレル工業株式会社様と共同で、
めっき処理に関して、
超音波とファインバブルを利用した「めっき方法」を実施しています。

超音波伝搬状態の測定・解析・評価に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい超音波制御技術です。

各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。

ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象として
対処することが重要です

注1:超音波の伝搬特性
非線形特性、応答特性、ゆらぎの特性、相互作用による影響

 (詳細を見る

取扱会社 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ (曲面対応)

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発

ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ (曲面対応)へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例