超音波システム研究所
最終更新日:2024-12-14 19:19:28.0
ポリイミドフィルムに鉄めっき(日本バレル工業株式会社)を行った部材を利用した超音波プローブ (曲面対応)5.00
基本情報ポリイミドフィルムに鉄めっき(日本バレル工業株式会社)を行った部材を利用した超音波プローブ (曲面対応)
目的に合わせた、オリジナル超音波プローブ(振動・音圧測定用、発振制御用、両用タイプ)の製造開発技術
超音波システム研究所は、
ポリイミドフィルムに鉄めっきを行った部材を利用した
超音波発振制御プローブを開発しました。
この技術を、応用して、各種曲面への
「超音波・振動の計測、伝搬制御・・・」についてコンサルティング対応しています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~100MHz
発振範囲 1kHz~25MHz
伝搬範囲 1kHz~900MHz以上
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<対象物・設置状態・・・の音響特性>を把握することで
表面弾性波(伝搬状態)のダイナミック制御を実現しました。
各種目的(洗浄、攪拌・・)に合わせた伝搬状態を実現します
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
鉄めっき処理:日本バレル工業株式会社
〒734-0022 広島市南区東雲1丁目2-7
超音波専用水槽(設計・製造・開発・コンサルティング対応)
超音波専用水槽を開発
超音波システム研究所は、
超音波の伝搬状態に関する計測技術を応用して、
超音波専用水槽を開発いたしました。
今回開発した超音波専用水槽を、
超音波洗浄や表面改質・・・に用いた結果、
超音波の利用効率以外にも、
キャビテーションや加速度の
伝搬状態の制御が簡単に行えるようになりました。
これは、全く新しい水槽の製造技術(注)と
表面処理技術であり、非常に大きな成果であることが、
状態を測定・解析することで確認しています。
注:オリジナル設計・製造・調整方法です
このの方法ならびに技術ノウハウを
コンサルティング事業として、対応しています。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答
mulnos:パワー寄与率
(詳細を見る)
超音波の音圧測定解析システムの製造技術を提供します
超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」を製造販売しています。
このシステムの(ノウハウを含めた)
製造技術・データの解析評価技術を提供します。
システム概要(推奨システム::超音波テスターNA)
内容
超音波洗浄機の音圧測定専用プローブ 1本
超音波測定汎用プローブ 1本
オシロスコープセット 1式
解析ソフト・説明書・各種インストールセット 1式
特徴
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 100kHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて発振・測定を行います。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響性能として検出します。
(詳細を見る)
超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術
超音波システム研究所は、
500Hzから500MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。
各種部材の音響特性の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
(詳細を見る)
超音波の音圧測定プローブを製造・開発する技術を提供
超音波システム研究所は、
0.1Hz~900MHzの超音波伝搬状態を測定可能にする
超音波プローブ・音圧測定解析システムの製造・開発技術を、
コンサルティング提供します。
超音波の音圧測定解析システム(超音波テスター:標準システム)
1.内容
超音波洗浄機の音圧測定専用プローブ 1本
超音波測定汎用プローブ 1本
オシロスコープセット 1式
解析ソフト・説明書・各種インストールセット 1式
2.特徴(標準的な仕様の場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 100kHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて発振・測定を行います。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響性能として検出します。
(詳細を見る)
表面弾性波の伝搬制御に基づいた、超音波伝搬用具の開発・製造技術
超音波システム研究所は、
500Hzから900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
新しい超音波伝搬用具を開発しました。
この技術を、コンサルティング対応します。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 0.5kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。
各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
(詳細を見る)
メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整)
超音波システム研究所は、
オリジナル製品(超音波システム)を利用した全く新しい、
<<振動をコントロールする技術>>を開発しました。
これまでに開発した、超音波の音圧測定解析・発振制御技術について、
超音波の非線形現象に関する「解析・評価」に基づいた、
メガヘルツ超音波の発振制御を行います。
ものの表面を伝搬する超音波のダイナミック特性を
測定・解析・評価したデータの蓄積から、
低周波(0.1Hz)~高周波(900MHz以上)の振動状態を
<測定・解析・評価>できる技術を応用しています。
建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
製造装置・システム全体の複雑な振動状態、・・・
に関して、新しい振動測定解析に基づいた対策が可能になりました。
これは、新しい方法および技術です、
これまでの実施結果から
様々な応用事例が発展しています。
特に、非常に低い周波数の振動や
不規則に変動する振動に対しても計測・対応が可能です。
(詳細を見る)
超音波めっき処理技術(日本バレル工業株式会社)
超音波システム研究所は、
日本バレル工業株式会社様と共同で、
めっき処理に関して、
超音波とファインバブルを利用した「めっき方法」を実施しています。
超音波伝搬状態の測定・解析・評価に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい超音波制御技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象として
対処することが重要です
注1:超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ
超音波システム研究所は、
500Hzから900MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
日本バレル工業株式会社様の、鉄めっき技術を利用した、
新しい超音波伝搬用具(超音波プローブ・・・)を開発しました。
この超音波技術を、コンサルティング対応しています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
利用に関しては、デジタル制御による、
離散値的なファンクションジェネレータの特性を利用した
各種パラメータの設定がポイントです
非線形共振型超音波発振プローブを利用することで
共振現象による音圧レベルの制御範囲が大きく広がるため
従来の共振現象による音圧レベルとは大きく異なり
ダメージや破壊といった現象にならない
音圧測定解析に基づいた、制御設定の最適化が可能です。
(詳細を見る)
超音波洗浄器にメガヘルツ超音波を追加する技術
超音波システム研究所(所在地:東京都八王子市)は、
超音波洗浄器に関して、
ファンクションジェネレータと
オリジナル超音波発振プローブを利用することで、
20MHz以下の発振で、
900MHz以上の超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、5000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
測定機器 例 オシロスコープ
(詳細を見る)
超音波素子(圧電素子)の超音波伝搬特性を調整する技術
超音波システム研究所は、
超音波システム(音圧測定、発振制御)を利用した、
超音波の伝搬状態に関する、測定・解析・評価実績に基づいて
超音波素子(圧電素子)の超音波伝搬特性を調整する技術を開発しました。
超音波素子(圧電素子)の表面弾性波を目的に合わせて利用するために、
素子表面に対して、特殊な表面処理を行います。
伝搬する超音波の音圧レベル・周波数範囲について調整可能にしています。
超音波(発振制御)と表面弾性波の組み合わせによる
ダイナミックな超音波伝搬制御を実現したことで、
音圧データの解析による特性から調整技術に発展しました。
ポイントは
表面弾性波による非線形現象を
効率の高い状態で制御可能にする
発振条件の最適化設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、システム技術をコンサルティング対応しています。
(詳細を見る)
超音波とファインバブルのダイナミック制御による表面処理技術
<<脱気ファインバブル発生液循環装置>>
1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させる。
2)キャビテーションにより溶存気体の気泡が発生する。
上記が脱気液循環装置の状態。
3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなる。
4)適切な液循環により、
20μ以下のファインバブルが発生する。
上記が脱気マイクロバブル発生液循環装置の状態。
5)上記の脱気ファインバブル発生液循環装置に対して
超音波を照射すると
ファインバブルを超音波が分散・粉砕して
ファインバブルの測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなる
上記の状態が、超音波を安定して制御可能にした状態。
6)超音波を安定して制御可能な状態に対して
オリジナル製品:メガヘルツの超音波発振制御プローブにより
メガヘルツ(1-20MHz)の超音波を発振制御する。
音圧レベルの制御方法は、液循環とメガヘルツの超音波の
オリジナル非線形共振現象をコントロールすることで
効果的なダイナミック状態に設定・制御する。
(詳細を見る)
超音波の非線形現象制御による化学反応制御装置
超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用して
「超音波による化学反応を制御する技術」を開発しました。
この技術は
容器の相互作用を測定確認することで
メガヘルツの超音波発振プローブによる超音波制御(注)により
目的に合わせた、超音波(キャビテーション・音響流)を制御します。
注:超音波制御
2種類の非線形共振型超音波発振プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧の共振現象と、
高調波の発生現象(非線形現象)による、
30MHz以上の高周波伝搬状態を、ダイナミック制御します。
注:超音波制御「精密洗浄事例」
スイープ発振 70kHz~15MHz 15W
パルス発振 13MHz 8W
注:超音波制御「ナノレベルの攪拌事例」
スイープ発振 880kHz~22MHz 12W
パルス発振 14MHz 10W
特に、
音響流制御による、高調波のダイナミック特性により
ナノレベルの反応・対応が実現しています
(詳細を見る)
オリジナル超音波プローブを利用した、超音波発振システム
超音波システム研究所は、
オリジナル超音波システム(音圧測定解析、発振制御)により、
対象物に伝搬する表面弾性波(超音波振動)の、
非線形現象をコントロールする技術を開発しました。
<<超音波の非線形振動現象をコントロールする技術>>
1)ファンクションジェネレータによる発振制御を
対象物の音響特性に合わせて、
発振出力、波形、変化・・・させる制御設定技術
2)超音波発振電圧の変化を、制御可能にする
超音波発振制御プローブの、発振面の調整を含めた製造技術
3)100メガヘルツの超音波振動変化を、計測可能にする
超音波測定プローブの、発振面の調整を含めた製造技術
4)スイープ発振条件の最適化技術
上記の技術を利用して
目的に合わせた
超音波の伝搬状態をコントロール(最適化)します。
注:対象物の音響特性と超音波の発振制御による相互作用について
非線形現象に関する音圧データの解析評価に基づいて
超音波のダイナミック制御・・・・を行います
(超音波テスターで、音圧の測定・解析・確認・評価を行っています)
(詳細を見る)
取扱会社 ポリイミドフィルムに鉄めっき(日本バレル工業株式会社)を行った部材を利用した超音波プローブ (曲面対応)
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発 2025. 1 脱気ファインバブル発生液循環装置を利用した、メガヘルツの流水式超音波システムを開発
ポリイミドフィルムに鉄めっき(日本バレル工業株式会社)を行った部材を利用した超音波プローブ (曲面対応)へのお問い合わせ
お問い合わせ内容をご記入ください。