超音波システム研究所
最終更新日:2024-10-08 14:41:56.0
<振動測定装置>仕様書1.00
基本情報<振動測定装置>仕様書
超音波を利用した振動計測が容易にできる「超音波テスターNA(10MHz B-2タイプ)SSP-2012」
<振動測定装置>
超音波の音圧測定解析システム
超音波を利用した振動計測が容易にできる
「超音波テスターNA(10MHz B-2タイプ)SSP-2012」
仕様書
超音波の音圧測定解析システムSSP-2012
B-2型:超音波測定特殊プローブ 1本
USBオシロスコープ Picoscope2204A 1式
説明書(USBメモリー 1個)
超音波測定特殊プローブ
数量 1本
品番 120B25:タイプC
コード長さ 1000mm
先端部(圧電素子) 直径40mm
重量 45g 接続プラグ BNC
コード太さ 直径3mm (参考規格 ICE-61010 CATII)
オシロスコープセット
・帯域幅:10MHz・ビット数:8ビット・バッファ:8キロサンプル
USBオシロスコープ Picoscope2204A
主な仕様
・帯域幅:10MHz
・チャンネル数:2チャンネル
・入力インピーダンス:1MΩ||14pF
・ビット数:8ビット
・バッファ:8キロサンプル
・波形発生器機能:DC~100kHz
表面弾性波の伝搬制御に基づいた、超音波伝搬用具の開発・製造技術
超音波システム研究所は、
500Hzから900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
新しい超音波伝搬用具を開発しました。
この技術を、コンサルティング対応します。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 0.5kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。
各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
(詳細を見る)
オリジナル超音波プローブによるメガヘルツ超音波の発振制御システム
超音波システム研究所は、
「超音波の非線形現象を制御する技術」を利用して
「超音波刺激を利用目的に合わせて制御する技術」を開発しました。
この技術は
容器の相互作用を測定確認することで
メガヘルツの超音波発振プローブによる超音波制御(注)により
目的に合わせた、超音波(キャビテーション・音響流)を制御します。
注:超音波制御
2種類の非線形共振型超音波発振プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧の共振現象と、高調波の発生現象(非線形現象)による、
30MHz以上の高周波伝搬状態を、ダイナミック制御します。
注:超音波制御「精密洗浄事例」
スイープ発振 70kHz~15MHz 15W
パルス発振 13MHz 8W
注:超音波制御「ナノレベルの攪拌事例」
スイープ発振 880kHz~22MHz 12W
パルス発振 14MHz 10W
特に、
音響流制御による、高調波のダイナミック特性により
ナノレベルの反応・対応が実現しています
金属粉末をナノサイズに分散する事例から応用発展させました。
(詳細を見る)
超音波洗浄機の改良技術(コンサルティング対応)
現状の超音波洗浄機を改良する方法
(超音波水槽と液循環の最適化技術を開発)
超音波システム研究所は、
超音波水槽の構造・強度・製造条件・・・による影響と
水槽内の液体の循環方法を設定することで
超音波の伝搬状態を制御する技術を開発しました。
この技術は、
複雑な超音波振動のダイナミック特性を
各種の関係性について解析・評価することで、
循環ポンプの設定方法(注)により、
キャビテーションと加速度の効果を
目的に合わせて設定する技術です。
注:水槽と循環液と空気の
境界の関係性に関する設定がノウハウです。
オーバーフロー構造になっていない水槽でも対応可能です。
具体的な対応として
現状の水槽による、超音波を減衰させる問題点を
液循環ポンプの設定により
対策するということができます。
特に精密な、ナノレベルの洗浄に対しては
メガヘルツの超音波発振プローブによる発振制御の追加対応を
提案実施対応します
(詳細を見る)
ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブ
超音波システム研究所は、
500Hzから900MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
日本バレル工業株式会社様の、鉄めっき技術を利用した、
新しい超音波伝搬用具(超音波プローブ・・・)を開発しました。
この超音波技術を、コンサルティング対応しています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
利用に関しては、デジタル制御による、
離散値的なファンクションジェネレータの特性を利用した
各種パラメータの設定がポイントです
非線形共振型超音波発振プローブを利用することで
共振現象による音圧レベルの制御範囲が大きく広がるため
従来の共振現象による音圧レベルとは大きく異なり
ダメージや破壊といった現象にならない
音圧測定解析に基づいた、制御設定の最適化が可能です。
(詳細を見る)
超音波プローブを利用した超音波制御システム
超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。
超音波を利用した
洗浄、改質、検査、・・・への新しい応用システムです。
低周波の振動・音との組み合わせ制御による応用も可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
応用システム技術として開発しました。
ポイントは
表面弾性波の利用方法です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象(注2)として
対処することが重要です
注1:超音波の伝搬特性
非線形特性
応答特性
ゆらぎの特性
相互作用による影響
注2:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
(詳細を見る)
メガヘルツの超音波洗浄器(音響流のコントロール技術)
超音波システム研究所は、
超音波洗浄器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象として
対処することが重要です
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
スイープ発振とパルス発振による、超音波洗浄器の利用技術を開発
超音波システム研究所は、
超音波洗浄器に関して、
ファンクションジェネレータと超音波プローブを応用することで、
100MHz以上の超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物へ100MHz以上の超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
対象物の超音波伝搬特性を確認することで、
オリジナル非線形共振現象の制御方法として
スイープ発振・パルス発振に関する、
システムの振動モードへの最適化として、
超音波発振制御プローブの発振条件を設定することが重要です。
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案しています。
(詳細を見る)
複数のスイープ発振を組み合わせた超音波の発振制御技術
超音波システム研究所は、
超音波振動が伝搬する現象に関する分類方法を開発しました。
この分類に基づいて、非線形共振型超音波発振プローブを利用した、
超音波の非線形スイープ発振制御技術を開発しました。
この超音波のスイープ発振制御技術方法は、
超音波の伝搬状態に関する
主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
線形・非線形の共振効果を目的に合わせてコントロールします。
これまでの実験・データ測定解析から
効果的な利用方法を
以下のような
4つの推奨制御に分類することができました。
1:2種類のスイープ発振制御(線形型)
2:3種類のスイープ発振制御(非線形型)
3:4種類のスイープ発振制御(ミックス型)
4:上記の組み合わせによるダイナミック制御(変動型)
さらに変動型は、スイープ発振条件により、以下のような
3つの制御タイプに分類することができました。
1:線形変動制御型
2:非線形変動制御型
3:ミックス変動制御型(ダイナミック変動型)
(詳細を見る)
メガヘルツ超音波を利用した、超音波洗浄機の改善コンサルティング
超音波システム研究所は、
メガヘルツ超音波発振制御を利用して、
1-900MHz以上の音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、5000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
音圧測定解析に基づいた、超音波プローブの非線形発振制御技術
超音波システム研究所は、
ファンクションジェネレータの二つの発振チャンネルから
2種類の超音波プローブを発振制御することで、
各種の相互作用を最適化して
超音波の非線形現象(注)をコントロールする技術を開発しました。
注:非線形(共振)現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる、超音波振動の共振現象
各種部材の超音波伝搬特性を目的に合わせて最適化することで
効率の高い超音波発振制御が可能になります。
超音波テスターの音圧データの測定解析により
表面弾性波のダイナミックな変化を、
利用目的に合わせて、コントロールするシステム技術です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の音圧測定解析(コンサルティング対応)
超音波システム研究所は、
多変量自己回帰モデルによるフィードバック解析技術を応用した、
「超音波の伝搬状態を測定・解析・評価する技術」を利用して
超音波利用に関するコンサルティング対応を行っています。
超音波テスターを利用したこれまでの
計測・解析・結果(注)を時系列に整理することで
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認します。
注:
非線形特性(音響流のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響
統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい理解を深めています。
その結果、
超音波の伝搬状態と対象物の表面について
新しい非線形パラメータが大変有効である事例による
実績が増えています。
特に、洗浄・加工・表面処理効果に関する評価事例・・
良好な確認に基づいた、制御・改善・・・が実現します。
(詳細を見る)
超音波の非線形発振制御技術 ――スイープ発振ノウハウ――
超音波システム研究所は、
表面弾性波の非線形振動現象を利用した
新しい超音波の非線形スイープ発振制御技術を開発しました。
複雑な振動状態について、
1)線形現象と非線形現象
2)相互作用と各種部材の音響特性
3)音と超音波と表面弾性波
4)低周波と高周波(高調波と低調波)
5)発振波形と出力バランス
6)発振制御と共振現象
・・・
上記について
音圧測定データに基づいた
統計数理モデルにより
表面弾性波の新しい評価方法で最適化します。
超音波洗浄、加工、攪拌、・・・表面検査、・・ナノテクノロジー、・・
応用研究・・・ 様々な対応が可能です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
(詳細を見る)
メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整)
超音波システム研究所は、
オリジナル製品(超音波システム)を利用した全く新しい、
<<振動をコントロールする技術>>を開発しました。
これまでに開発した、超音波の音圧測定解析・発振制御技術について、
超音波の非線形現象に関する「解析・評価」に基づいた、
メガヘルツ超音波の発振制御を行います。
ものの表面を伝搬する超音波のダイナミック特性を
測定・解析・評価したデータの蓄積から、
低周波(0.1Hz)~高周波(900MHz以上)の振動状態を
<測定・解析・評価>できる技術を応用しています。
建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
製造装置・システム全体の複雑な振動状態、・・・
に関して、新しい振動測定解析に基づいた対策が可能になりました。
これは、新しい方法および技術です、
これまでの実施結果から
様々な応用事例が発展しています。
特に、非常に低い周波数の振動や
不規則に変動する振動に対しても計測・対応が可能です。
(詳細を見る)
超音波を利用した「振動計測技術」をコンサルティング対応
超音波システム研究所(所在地:東京都八王子市)は、
オリジナル製品(超音波テスター)を利用した全く新しい、
<<振動計測技術>>を開発しました。
これまでに開発した、超音波の音圧測定解析技術について、
超音波の非線形現象に関する「測定・解析・制御」技術を応用します。
ものの表面を伝搬する超音波のダイナミック特性を
測定・解析・評価したデータの蓄積から、
低周波(0.1Hz)~高周波(200MHz)の振動状態を
<測定・解析・評価>できる技術を開発しました。
建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
に関して、新しい振動現象に基づいた対策が可能になりました。
これは、新しい方法および技術です、
これまでの解析結果から
様々な応用事例が発展しています。
特に、標準測定時間として連続72時間のデータ採取が可能ですので
非常に低い周波数の振動や
不規則に変動する振動に対しても計測が可能です
(詳細を見る)
ガラス容器を利用した超音波制御技術
超音波システム研究所は、
ガラス容器の音響特性に基づいた、
超音波発振制御プローブを開発しました。
各容器の形状・材質・・・により、
基本的な音響特性(応答特性、伝搬特性)を確認することで、
発振制御(出力、波形、発振周波数、変化、・・・)による
目的の超音波伝搬状態を可能にします。
ポイントは、音圧データの測定・解析に基づいた
システムのダイナミックな振動特性を評価することです。
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認(注)しています。
注:
非線形特性(高調波のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響
統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい技術として開発しました。
詳細な、発振制御の設定条件は
超音波プローブや発振機器の特性も影響するため
実験確認に基づいて決定します。
その結果、新しい非線形パラメータが大変有効である事例・実績が増えています。
(詳細を見る)
ステンレス製真空二重構造容器を利用した超音波発振制御プローブ
超音波システム研究所は、
900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術
超音波システム研究所は、
500Hzから500MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。
各種部材の音響特性の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
(詳細を見る)
取扱会社 <振動測定装置>仕様書
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発
<振動測定装置>仕様書へのお問い合わせ
お問い合わせ内容をご記入ください。