超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-12-14 19:19:28.0

  •  
  • カタログ発行日:2024/10/5

オリジナル超音波プローブを利用した振動測定・解析システム(超音波テスター)1.00

基本情報オリジナル超音波プローブを利用した振動測定・解析システム(超音波テスター)

振動測定解析が容易にできる 「超音波テスターNA(10MHzタイプ)SSP-2012」

振動測定解析が容易にできる
「超音波テスターNA(10MHzタイプ)SSP-2012」

A-1 超音波測定汎用プローブ 2本
オリジナル超音波プローブ(素子40mmタイプ)
超音波測定汎用プローブ
数量 2本
品番 120B30:タイプD
コード長さ 1000mm
先端部(圧電素子) 直径45mm
重量 50g 接続プラグ BNC
コード太さ 直径3mm (参考規格 ICE-61010 CATII)

A-2 オシロスコープセット
(オシロスコープ
・帯域幅:10MHz・ビット数:8ビット・バッファ:8キロサンプル)
USBオシロスコープ Picoscope2204A

A-3 解析ソフト・説明書・各種インストールセット1式
(USBメモリー)

超音波プローブ:概略仕様
 測定範囲 0.01Hz~100MHz 
 発振範囲 1kHz~25MHz
 伝搬範囲 1kHz~900MHz以上
 材質 ステンレス、LCP樹脂、シリコン・・
 測定機器 例 オシロスコープ
 発振機器 例 ファンクションジェネレータ

メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整)

メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整) 製品画像

超音波システム研究所は、
オリジナル製品(超音波システム)を利用した全く新しい、
 <<振動をコントロールする技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析・発振制御技術について、
 超音波の非線形現象に関する「解析・評価」に基づいた、
 メガヘルツ超音波の発振制御を行います。

ものの表面を伝搬する超音波のダイナミック特性を
 測定・解析・評価したデータの蓄積から、
 低周波(0.1Hz)~高周波(900MHz以上)の振動状態を
 <測定・解析・評価>できる技術を応用しています。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
製造装置・システム全体の複雑な振動状態、・・・
 に関して、新しい振動測定解析に基づいた対策が可能になりました。

これは、新しい方法および技術です、
 これまでの実施結果から
 様々な応用事例が発展しています。

特に、非常に低い周波数の振動や
 不規則に変動する振動に対しても計測・対応が可能です。 
 (詳細を見る

表面弾性波の伝搬制御に基づいた、超音波伝搬用具の開発・製造技術

表面弾性波の伝搬制御に基づいた、超音波伝搬用具の開発・製造技術 製品画像

超音波システム研究所は、
500Hzから900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
新しい超音波伝搬用具を開発しました。
この技術を、コンサルティング対応します。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
 発振制御により、音圧レベル、周波数、ダイナミック特性について
 目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。

各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、3000リッターの水槽でも、
 数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
 (詳細を見る

オリジナル超音波プローブによるメガヘルツ超音波の発振制御システム

オリジナル超音波プローブによるメガヘルツ超音波の発振制御システム 製品画像

超音波システム研究所は、
「超音波の非線形現象を制御する技術」を利用して
「超音波刺激を利用目的に合わせて制御する技術」を開発しました。

この技術は
 容器の相互作用を測定確認することで
 メガヘルツの超音波発振プローブによる超音波制御(注)により
 目的に合わせた、超音波(キャビテーション・音響流)を制御します。

注:超音波制御
2種類の非線形共振型超音波発振プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧の共振現象と、高調波の発生現象(非線形現象)による、
30MHz以上の高周波伝搬状態を、ダイナミック制御します。

注:超音波制御「精密洗浄事例」
 スイープ発振 70kHz~15MHz 15W
 パルス発振  13MHz 8W

注:超音波制御「ナノレベルの攪拌事例」
 スイープ発振 880kHz~22MHz 12W
 パルス発振  14MHz 10W

特に、
 音響流制御による、高調波のダイナミック特性により
 ナノレベルの反応・対応が実現しています

金属粉末をナノサイズに分散する事例から応用発展させました。
 (詳細を見る

超音波プローブを利用した超音波制御システム

超音波プローブを利用した超音波制御システム 製品画像

超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。

超音波を利用した
 洗浄、改質、検査、・・・への新しい応用システムです。

低周波の振動・音との組み合わせ制御による応用も可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 応用システム技術として開発しました。

ポイントは
 表面弾性波の利用方法です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象(注2)として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

注2:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象


 (詳細を見る

超音波洗浄に関する、基礎検討システム

超音波洗浄に関する、基礎検討システム 製品画像

超音波システム研究所は、
 「脱気・マイクロバブル制御による超音波システム」を応用した
 超音波洗浄に関する
 「基礎実験システム」を開発しました。

-今回開発したシステムの実験事例-
 キャビテーションの洗浄効果の確認
 加速度効果の確認
 音響流による洗浄効果の確認
 液循環による洗浄効果の確認
 キャビテーションと液循環の相互作用の確認
 洗浄物と洗浄水槽の相互作用の確認
 ・・・・・

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

オリジナル超音波プローブによるメガヘルツ超音波の発振制御装置

オリジナル超音波プローブによるメガヘルツ超音波の発振制御装置 製品画像

超音波システム研究所は、
下記オリジナル製品を利用した超音波システムを製造販売しています。
1) 音圧測定解析システム(超音波テスター)
2) メガヘルツの超音波発振制御プローブ
3) 超音波発振システム(20MHzタイプ)
 
音圧測定解析システム:超音波テスターの特徴
200MHzタイプ
  *測定(解析)周波数の範囲
   仕様 0.01Hz から 200MHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

超音波プローブの伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出

 (詳細を見る

音圧測定解析に基づいた、超音波プローブの非線形発振制御技術

音圧測定解析に基づいた、超音波プローブの非線形発振制御技術 製品画像

超音波システム研究所は、
ファンクションジェネレータの二つの発振チャンネルから
 2種類の超音波プローブを発振制御することで、
 各種の相互作用を最適化して
 超音波の非線形現象(注)をコントロールする技術を開発しました。

注:非線形(共振)現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる、超音波振動の共振現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
 効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波のダイナミックな変化を、
 利用目的に合わせて、コントロールするシステム技術です。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

超音波超音波洗浄機の製造・開発・コンサルティング対応

超音波超音波洗浄機の製造・開発・コンサルティング対応 製品画像

超音波システム研究所は、
 超音波制御が簡単にできる、標準タイプの超音波装置に関して
 標準サイズからの変更による超音波伝搬状態の影響に関する
 測定・解析・評価技術を開発しました。
この技術を応用して、
 目的に合わせた、水槽サイズの超音波システムを
 製造・開発・コンサルティング対応します。

装置概要

*超音波システム(超音波洗浄機)

1:超音波
2:超音波水槽
3:循環ポンプ(脱気・マイクロバブル発生液循環システム)
4:タイマー


超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

超音波の音圧測定解析(コンサルティング対応)

超音波の音圧測定解析(コンサルティング対応) 製品画像

超音波システム研究所は、
 多変量自己回帰モデルによるフィードバック解析技術を応用した、
 「超音波の伝搬状態を測定・解析・評価する技術」を利用して
 超音波利用に関するコンサルティング対応を行っています。

超音波テスターを利用したこれまでの
 計測・解析・結果(注)を時系列に整理することで
 目的に適した超音波の状態を示す
 新しい評価基準(パラメータ)を設定・確認します。

注:
 非線形特性(音響流のダイナミック特性)
 応答特性
 ゆらぎの特性
 相互作用による影響

統計数理の考え方を参考に
 対象物の音響特性・表面弾性波を考慮した
 オリジナル測定・解析手法を開発することで
 振動現象に関する、詳細な各種効果の関係性について
 新しい理解を深めています。

その結果、
 超音波の伝搬状態と対象物の表面について
 新しい非線形パラメータが大変有効である事例による
 実績が増えています。

特に、洗浄・加工・表面処理効果に関する評価事例・・
 良好な確認に基づいた、制御・改善・・・が実現します。

 (詳細を見る

オリジナル超音波システム(音圧測定解析、発振制御)の製造販売

オリジナル超音波システム(音圧測定解析、発振制御)の製造販売 製品画像

超音波の測定解析と発振制御が容易にできる、超音波システム

超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」と
超音波の発振制御が容易にできる
「超音波発振システム(20MHz)」
 をセットにしたシステムによる実験を公開しています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

注:超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数
 (詳細を見る

超音波を利用した「振動計測技術」をコンサルティング対応

超音波を利用した「振動計測技術」をコンサルティング対応 製品画像

超音波システム研究所(所在地:東京都八王子市)は、
オリジナル製品(超音波テスター)を利用した全く新しい、
 <<振動計測技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析技術について、
 超音波の非線形現象に関する「測定・解析・制御」技術を応用します。

ものの表面を伝搬する超音波のダイナミック特性を
 測定・解析・評価したデータの蓄積から、
 低周波(0.1Hz)~高周波(200MHz)の振動状態を
 <測定・解析・評価>できる技術を開発しました。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
 に関して、新しい振動現象に基づいた対策が可能になりました。

これは、新しい方法および技術です、
 これまでの解析結果から
 様々な応用事例が発展しています。

 特に、標準測定時間として連続72時間のデータ採取が可能ですので
  非常に低い周波数の振動や
  不規則に変動する振動に対しても計測が可能です 


 (詳細を見る

ガラス容器の超音波伝搬特性を利用した超音波発振制御技術

ガラス容器の超音波伝搬特性を利用した超音波発振制御技術 製品画像

超音波システム研究所は、
ガラス容器の音響特性に基づいた、
超音波発振制御プローブを開発しました。

各容器の形状・材質・・・により、
基本的な音響特性(応答特性、伝搬特性)を確認することで、
発振制御(出力、波形、発振周波数、変化、・・・)による
目的の超音波伝搬状態を可能にします。

ポイントは、音圧データの測定・解析に基づいた
システムのダイナミックな振動特性を評価することです。
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認(注)しています。
注:
非線形特性(高調波のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響

統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい技術として開発しました。

詳細な、発振制御の設定条件は
超音波プローブや発振機器の特性も影響するため
実験確認に基づいて決定します。

その結果、新しい非線形パラメータが大変有効である事例・実績が増えています。
 (詳細を見る

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術

超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術 製品画像

超音波システム研究所は、
500Hzから500MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。

超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。

各種部材の音響特性の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
 (詳細を見る

超音波洗浄器にメガヘルツ超音波を追加する技術

超音波洗浄器にメガヘルツ超音波を追加する技術 製品画像

超音波システム研究所(所在地:東京都八王子市)は、
超音波洗浄器に関して、
ファンクションジェネレータと
オリジナル超音波発振プローブを利用することで、
20MHz以下の発振で、
900MHz以上の超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、5000リッターの水槽でも、
 対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 1.0kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ
 測定機器 例 オシロスコープ
 (詳細を見る

オリジナル超音波プローブを利用した、超音波発振システム

オリジナル超音波プローブを利用した、超音波発振システム 製品画像

超音波システム研究所は、
 オリジナル超音波システム(音圧測定解析、発振制御)により、
 対象物に伝搬する表面弾性波(超音波振動)の、
 非線形現象をコントロールする技術を開発しました。

<<超音波の非線形振動現象をコントロールする技術>>

1)ファンクションジェネレータによる発振制御を
 対象物の音響特性に合わせて、
 発振出力、波形、変化・・・させる制御設定技術

2)超音波発振電圧の変化を、制御可能にする
 超音波発振制御プローブの、発振面の調整を含めた製造技術

3)100メガヘルツの超音波振動変化を、計測可能にする
 超音波測定プローブの、発振面の調整を含めた製造技術

4)スイープ発振条件の最適化技術

上記の技術を利用して
 目的に合わせた
 超音波の伝搬状態をコントロール(最適化)します。

注:対象物の音響特性と超音波の発振制御による相互作用について
 非線形現象に関する音圧データの解析評価に基づいて
 超音波のダイナミック制御・・・・を行います
 (超音波テスターで、音圧の測定・解析・確認・評価を行っています)

 (詳細を見る

取扱会社 オリジナル超音波プローブを利用した振動測定・解析システム(超音波テスター)

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発

オリジナル超音波プローブを利用した振動測定・解析システム(超音波テスター)へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例