超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-12-15 16:22:46.0

  •  
  • カタログ発行日:2020/4/7

多変量自己回帰モデルによるフィードバック解析技術 no.21.0

基本情報多変量自己回帰モデルによるフィードバック解析技術 no.2

超音波の伝搬状態を測定・解析・評価する技術

超音波システム研究所は、
 多変量自己回帰モデルによるフィードバック解析技術を応用した、
 「超音波の伝搬状態を測定・解析・評価する技術」を利用して
 超音波利用に関するコンサルティング対応を行っています。

超音波テスターを利用したこれまでの
 計測・解析・結果(注)を時系列に整理することで
 目的に適した超音波の状態を示す
 新しい評価基準(パラメータ)を設定・確認します。

注:
 非線形特性(音響流のダイナミック特性)
 応答特性
 ゆらぎの特性
 相互作用による影響

統計数理の考え方を参考に
 対象物の音響特性・表面弾性波を考慮した
 オリジナル測定・解析手法を開発することで
 振動現象に関する、詳細な各種効果の関係性について
 新しい理解を深めています。

その結果、
 超音波の伝搬状態と対象物の表面について
 新しい非線形パラメータが大変有効である事例による
 実績が増えています。

特に、洗浄・加工・表面処理効果に関する評価事例・・
 良好な確認に基づいた、制御・改善・・・が実現します。

超音波の音圧測定データ解析(「R」フリーな統計処理言語かつ環境)

超音波の音圧測定データ解析(「R」フリーな統計処理言語かつ環境) 製品画像

超音波システム研究所は、
オリジナル製品(超音波テスター)を利用した、全く新しい、
 <<表面弾性波の伝搬状態をコントロール技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析技術について、
 超音波の非線形現象に関する「測定・解析・評価」技術を応用します。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
 に関して、新しい振動現象に基づいた対策が可能になりました。

この技術について、コンサルティング対応しています。

注:解析には下記ツールを利用します
注:OML(Open Market License)
注:TIMSAC(TIMe Series Analysis and Control program)
注:「R」フリーな統計処理言語かつ環境

 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数
 (詳細を見る

表面弾性波の相互作用をコントロールする超音波技術

表面弾性波の相互作用をコントロールする超音波技術 製品画像

超音波システム研究所は、
ファンクションジェネレータの一つの発振チャンネルから
 同時に2種類の超音波プローブを発振することで発生する
 相互作用を利用して
 超音波の非線形現象(注)をコントロールする技術を開発しました。

注:非線形(共振)現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
 効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波のダイナミックな変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた
 低い周波数の高い音圧レベルの伝搬状態を実現します。

 (詳細を見る

超音波伝搬現象の分類に基づいた、超音波プローブの製造技術

超音波伝搬現象の分類に基づいた、超音波プローブの製造技術 製品画像

超音波システム研究所は、
超音波伝搬現象の分類に基づいた、
900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を開発しました。

目的に合わせた、
 オリジナル超音波発振制御プローブを製造開発が可能です。

ポイントは、超音波プローブの超音波伝搬特性の確認です。
超音波のダイナミックな変化に対する、応答特性が最も重要です。
この特性により、高調波の発生可能範囲が決定します。
現状では、以下の範囲に対して、製造対応可能となっています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 1.0kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

<材質・形状・構造・・・による音響特性>を
 把握(測定・解析・評価)することで、
 目的に合わせた超音波の伝搬状態を実現します

この技術を、コンサルティング提供します
 興味のある方はメールでお問い合わせください
 (詳細を見る

超音波を利用した「振動計測技術」をコンサルティング対応

超音波を利用した「振動計測技術」をコンサルティング対応 製品画像

超音波システム研究所(所在地:東京都八王子市)は、
オリジナル製品(超音波テスター)を利用した全く新しい、
 <<振動計測技術>>を開発しました。

これまでに開発した、超音波の音圧測定解析技術について、
 超音波の非線形現象に関する「測定・解析・制御」技術を応用します。

ものの表面を伝搬する超音波のダイナミック特性を
 測定・解析・評価したデータの蓄積から、
 低周波(0.1Hz)~高周波(200MHz)の振動状態を
 <測定・解析・評価>できる技術を開発しました。

建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
 に関して、新しい振動現象に基づいた対策が可能になりました。

これは、新しい方法および技術です、
 これまでの解析結果から
 様々な応用事例が発展しています。

 特に、標準測定時間として連続72時間のデータ採取が可能ですので
  非常に低い周波数の振動や
  不規則に変動する振動に対しても計測が可能です 


 (詳細を見る

超音波伝搬現象の分類技術に基づいた、コンサルティング対応

超音波伝搬現象の分類技術に基づいた、コンサルティング対応 製品画像

超音波システム研究所は、
 超音波伝搬状態の測定データを
 バイスペクトル解析することで、
 超音波振動が伝搬する現象に関する分類方法を開発しました。


今回開発した分類に関する方法は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 線形・非線形の共振効果を推定します。

これまでのデータ解析から
 効果的な利用方法を
 以下のような
 4つのタイプに分類することができました。

 1:線形型
 2:非線形型
 3:ミックス型
 4:変動型

 上記の各タイプに基づいた装置開発・制御設定・・・
 成功事例が多数あります。


この技術を
 コンサルティング対応として提供します

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:解析には下記ツールを利用します
注:「R」フリーな統計処理言語かつ環境
 (詳細を見る

超音波の音圧測定解析システムの製造技術を提供します

超音波の音圧測定解析システムの製造技術を提供します 製品画像

超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」を製造販売しています。
このシステムの(ノウハウを含めた)
 製造技術・データの解析評価技術を提供します。

システム概要(推奨システム::超音波テスターNA)

内容
 超音波洗浄機の音圧測定専用プローブ 1本
 超音波測定汎用プローブ  1本
 オシロスコープセット 1式
 解析ソフト・説明書・各種インストールセット 1式

特徴
 *測定(解析)周波数の範囲
  仕様 0.1Hz から 10MHz
 *超音波発振
  仕様 1Hz から 100kHz
 *表面の振動計測が可能
 *24時間の連続測定が可能
 *任意の2点を同時測定
 *測定結果をグラフで表示
 *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置や状態と、弾性波動を考慮した解析で、
 各種の音響性能として検出します。

 (詳細を見る

超音波の音圧測定解析に基づいた、超音波のダイナミック制御事例

超音波の音圧測定解析に基づいた、超音波のダイナミック制御事例 製品画像

超音波システム研究所は、
超音波振動の測定・解析システムを、2012年4月より、製造販売しています。

測定したデータについて、弾性波動を考慮した解析で、
 超音波の非線形現象(音響流)やキャビテーション効果を
 グラフにより目視確認できるようにしたシステムです。

複雑に変化する超音波の利用状態について、「非線形現象」を考慮するために、
 時系列データの自己回帰モデルによる、自己相関・バイスペクトルを解析して
 その変化・・・・を、評価・応用しています

目的に応じた新しい利用方法を多数実現しています

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

超音波装置の改善・改良 <音圧データの計測・解析・評価>

超音波装置の改善・改良 <音圧データの計測・解析・評価> 製品画像

超音波の音圧測定・解析・評価技術を応用

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム技術)を開発しました。

この技術を利用した
超音波装置の<計測・解析・評価>対応を行います。

具体的な対応・費用・・・については
メールでお問い合わせください

*コメント*

現状、超音波利用に関して

利用目的に対して最適な超音波の状態を

検出・確認することは大変難しいと思います

そこで、超音波に関する日常管理に「音圧データ」を取り入れることで

最終評価状態(不良率、歩留まり、・・・)との関係を

統計データの蓄積と解析を通して、解決したいと考えて実施してきました

時系列データの解析技術(注)を利用して分析することで

効果的な改善が実現するようになりました

このような改善を継続した結果

低出力の超音波発振制御にによる成功例が増えたことで

オリジナル製品:超音波システム(音圧測定解析、発振制御)を、

2021年3月より製造販売しています
 (詳細を見る

音圧データ解析による、超音波のシステム技術(コンサルティング)

音圧データ解析による、超音波のシステム技術(コンサルティング) 製品画像

超音波のシステム技術

1:専用水槽の開発技術
2:超音波振動子の改良技術
3:超音波伝搬状態の測定技術
4:超音波(音響流)制御技術

 上記に関する システム技術 を提供しています。

目的に合わせた超音波の制御を可能にする技術です。

 *超音波振動子改良技術ノウハウ・・・*

 *超音波水槽の設計技術ノウハウ・・・*

 *超音波伝搬状態の測定技術ノウハウ・・・*

 *超音波(音響流)の制御技術ノウハウ・・・*

    以上を提供させていただきます

詳細は 超音波システム研究所 にメールでお問い合わせください
 (詳細を見る

超音波の音圧測定解析システム「超音波テスターNA」

超音波の音圧測定解析システム「超音波テスターNA」 製品画像

特徴(標準的な仕様の場合)

  *測定(解析)周波数の範囲
   仕様 0.1Hz から 10MHz
  *超音波発振
   仕様 1Hz から 100kHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置や状態と、弾性波動を考慮した解析で、
 各種の音響性能として検出します。

超音波プローブ:概略仕様
測定範囲 0.01Hz~10MHz
発振範囲 1kHz~25MHz
伝搬範囲 1kHz~900MHz以上
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

<統計的な考え方>を利用した、超音波の測定・解析・評価技術

<統計的な考え方>を利用した、超音波の測定・解析・評価技術 製品画像

超音波システム研究所は、
 超音波利用に関して、
 <統計的な考え方>を利用した
 効果的な「測定・解析・評価方法」に関する技術を開発しています。

<統計的な考え方について>
 統計数理には、抽象的な性格と具体的な性格の二面があり、
 具体的なものとの接触を通じて
 抽象的な考えあるいは方法が発展させられていく、
 これが統計数理の特質である
  科学の中の統計学 赤池 弘次 (編集)より

<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。

正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。

<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )

1)先入観や経験は正しくないことがあると考える必要があります

2)モデルの本質を考えるためには、
 圏論を利用することが有効だと考えています
 (詳細を見る

超音波データの統計数理(R言語・環境による解析)

超音波データの統計数理(R言語・環境による解析) 製品画像

超音波システム研究所は、
 超音波利用に関して、
 <統計的な考え方>を利用した
 効果的な「測定・解析・評価方法」に関する技術を開発しています。

<統計的な考え方について>
 統計数理には、抽象的な性格と具体的な性格の二面があり、
 具体的なものとの接触を通じて
 抽象的な考えあるいは方法が発展させられていく、
 これが統計数理の特質である

超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」

<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。

正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

オンライン個別コンサルティング:超音波技術

オンライン個別コンサルティング:超音波技術 製品画像

超音波システム研究所は、
下記の通り、オンライン個別コンサルティングを行います。

参加者 1社(Microsoft Teams meeting 参加可能範囲)
費用 3万円(税込み 33000円)
時間 150分(例 9:30-12:00、 13:00-15:30)

日程 調整

その他

1)PCをご利用ください
2)Zoom利用、Microsoft Teams meeting利用

<開催主旨>

■はじめに
受講者一社(あるいはMicrosoft Teams meeting 参加可能範囲)に対して
 オンラインコンサルティングを行います
 超音波利用について、
 経験と実績に基づいた
 具体的なノウハウ説明とディスカッションを行います

興味のある方はメールで連絡してください。
希望テーマに対するコンサルティングについて提案させて頂きます。 
 (詳細を見る

取扱会社 多変量自己回帰モデルによるフィードバック解析技術 no.2

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発

多変量自己回帰モデルによるフィードバック解析技術 no.2へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例