超音波システム研究所
最終更新日:2024-04-13 17:38:14.0
表面改質処理を行った、超音波振動子(600W以上)のファンクションジェネレーター発振技術2.00
基本情報表面改質処理を行った、超音波振動子(600W以上)のファンクションジェネレーター発振技術
超音波とファインバブルによる超音波振動子の表面残留応力緩和・均一化効果
超音波システム研究所は、
超音波の伝搬状態に関する、測定・解析・評価技術を応用して、
超音波とファインバブルによる、
超音波振動子の表面残留応力を緩和する技術を公開しています。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。
その結果、超音波水槽をはじめ、様々な部品の効果が実証されています。
この資料では、超音波振動子の効果事例を紹介します
(表面改質処理については、対象物・改質環境・各種条件・・・・に合わせた
コンサルティング対応しています。興味のある方は、メールでお問い合わせください)
この技術に基づいた、適正な超音波利用により
超音波振動子は600Wの発振機による出力よりも、高い音圧で高い周波数のダイナミックな制御が可能になります
超音波機器の音圧測定解析(自己相関、バイスペクトル、他)
特徴(標準的な仕様の場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 100MHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データのオリジナル解析ソフトを利用
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて測定を行います。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響性能として検出します。
音圧測定解析技術について、コンサルティング対応します
1)測定装置の操作
2)解析ソフトの操作
3)解析結果の評価方法
<解析の考え方:統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
超音波の伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出
(詳細を見る)
超音波の各種相互作用を評価する技術ー音圧データのパワー寄与率解析
超音波振動の相互作用を測定解析評価する技術を開発
--音圧データのフィードバック解析:パワー寄与率の解析--
超音波システム研究所は、
超音波の音圧測定による、時系列データを解析することで、
各種相互作用を測定解析評価する技術を開発しました。
その結果、相互作用の評価に基づいた
超音波利用状態を最適化する技術に発展しています。
具体的には、以下のような事例があります
1)超音波の発振周波数・出力レベルの選択基準の最適化
2)超音波の発振制御条件の最適化
3)水槽・超音波(振動子)の設置に関する最適化
4)液循環装置・制御条件の最適化
5)水槽・超音波の設計条件の最適化
6)洗浄液・洗剤・溶剤・・の最適化
7)隣接水槽、治具・・との最適化
目的に合わせた、オリジナル超音波システムの開発が可能です。
(詳細を見る)
最大25MHzの超音波発振制御システム(製造販売)
超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。
超音波を利用した
洗浄、改質、検査、・・・への新しい応用システムです。
低周波の振動・音との組み合わせ制御による応用も可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
応用システム技術として開発しました。
ポイントは
表面弾性波の利用方法です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象(注2、3)として
対処することが重要です
注1:超音波の伝搬特性
非線形特性
応答特性
ゆらぎの特性
相互作用による影響
注2:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
注3:過渡超音応力波
(詳細を見る)
ファインバブルと超音波による、表面処理技術
<<脱気ファインバブル発生液循環装置>>
1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させる。
2)キャビテーションにより溶存気体の気泡が発生する。
上記が脱気液循環装置の状態。
3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなる。
4)適切な液循環により、
20μ以下のファインバブルが発生する。
上記が脱気マイクロバブル発生液循環装置の状態。
5)上記の脱気ファインバブル発生液循環装置に対して
超音波を照射すると
ファインバブルを超音波が分散・粉砕して
ファインバブルの測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなる
上記の状態が、超音波を安定して制御可能にした状態。
6)超音波を安定して制御可能な状態に対して
オリジナル製品:メガヘルツの超音波発振制御プローブにより
メガヘルツの超音波を発振制御する。
音圧レベルの制御方法は、液循環とメガヘルツの超音波の
オリジナル非線形共振現象をコントロールすることで
効果的なダイナミック状態に設定・制御する。
(詳細を見る)
超音波振動子の表面残留応力緩和・均一化技術
超音波システム研究所は、
超音波の伝搬状態に関する、計測・解析・制御技術を応用して、
超音波とファインバブル発生液循環システムによる、
超音波振動子の表面残留応力を緩和する技術を公開しました。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。
特に、超音波の伝搬状態を
対象物のガイド波(表面弾性波・・)を考慮した
設定・治工具・制御・・・により、
効果的な超音波照射条件・・・を実現させる方法を開発しました。
金属部品、樹脂部品、粉体部材、・・・の各種に対して
幅広い効果を確認しています。
この技術を
コンサルティング対応として提供します
これは、新しい超音波による表面処理技術であり、
音響特性による一般的な効果を含め
新素材の開発、攪拌、分散、洗浄、化学反応実験・・・
に大きな特徴的な固有の操作技術として、
利用・発展できると考えています。
(詳細を見る)
超音波振動子の表面残留応力緩和処理技術(コンサルティング対応)
超音波システム研究所は、
超音波の伝搬状態に関する、測定・解析・評価技術を応用して、
超音波とファインバブルによる、
超音波振動子の表面残留応力を緩和する技術を公開しています。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。
その結果、超音波水槽をはじめ、様々な部品の効果が実証されています。
(詳細を見る)
メガヘルツ超音波の発振制御による、表面残留応力を緩和処理する技術
超音波システム研究所は、
1)超音波プローブの製造技術
2)超音波伝搬状態の評価技術
3)超音波を利用した表面検査技術
以上を応用して、表面残留応力の測定・解析・評価方法を開発してきました。
多数の実績から、超音波の利用技術として様々な応用が可能であると考え、
関連技術を含め公開しています。
具体例
表面処理ノウハウ:標準的な設定
出力 13-15V
矩形波 Duty47.1%
スイープ範囲 500kHz~13MHz 2秒
強度が低い対象(あるいは長時間の処理)に対する設定
出力 1-3V
矩形波 Duty47.1%
スイープ範囲 300kHz~3MHz 1秒
(あるいは 100kHz~5MHz 1秒)
注:対象物の超音波伝搬特性と、
ファンクションジェネレーターの発振特性により
発振条件は大きく変わります
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の非線形発振制御による表面改質(応力緩和・均一化)技術
超音波システム研究所は、
超音波の伝搬状態に関する、計測・解析・制御技術を、
対象物の音響特性として解析・応用することで、
超音波の非線形伝搬状態を制御可能にしました。
その結果、効率良く、
部品の表面残留応力を緩和して、表面全体を均一化する技術を開発しました。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うとともに
各種表面処理の均一化が実現しています。
特に、超音波の伝搬状態を
対象物のガイド波(表面弾性波・・)を考慮した設定・制御により、
対象物への効果的なダイナミックに変化する
非線形現象を含んだ一定の範囲の刺激として実現させる
制御方法・治工具・システム開発・・・具体的な方法・技術を開発しました。
金属部品、樹脂部品、粉体部材、・・・の各種の表面に対して
幅広い効果を確認しています。
これは、新しい超音波による表面処理技術であり、
音響特性による一般的な効果を含め
新素材の開発、攪拌、分散、洗浄、化学反応実験・・・
に大きな特徴的な固有の操作技術として、
利用・発展できると考え、提案・実施しています。
(詳細を見る)
<超音波のダイナミック制御システム>
<超音波のダイナミック制御システム>
超音波の伝搬状態をシステムとしてとらえ、解析と制御を行う
多くの超音波利用の目的は、
対象物・対象液に伝搬する超音波の
非線形現象の予測あるいは制御にあります。
しかし、多くの実施例で
キャビテーションによる理論と
実際の違いによる問題が多数指摘されています。
この様な事例に対して
1)障害を除去するものは
時系列で変化する超音波について、
音圧データの統計的データ処理である
<超音波伝搬状態の計測・解析技術>
2)対象に関するデータの解析の結果に基づいて
対象の音響特性を確認する
<対象物の表面弾性波や
対象液の音響流に関する音響特性を検出する技術>
3)特性の確認により
超音波のダイナミック制御の実現に進む
<非線形現象をコントロールする技術
複数の超音波に対するスイープ発振制御>
以上の方法により
超音波を効率的な利用状態に改善し
目的とする超音波の利用を実現した
オリジナル超音波制御システムの実施例が多数あります (詳細を見る)
超音波とファインバブルを利用した「めっき処理」コンサルティング
超音波システム研究所は、
2015年から、
日本バレル工業株式会社様と共同で、
ファインバブルとメガヘルツの超音波を利用した、
超音波めっき処理技術を開発しています。
注:2024年8月現在、良好な結果に基づいて
様々な応用技術として継続発展中です
1)洗浄・加工・溶接・めっき・・表面処理・・・
2)化学反応・液体の均一化・攪拌・・・
3)検査・評価・・・
4)目的に合わせた、超音波とファインバアブルの最適化制御
現在、日本バレル工業株式会社様と共同で、
鉄めっき処理(鉄粉・アモルファス・メガヘルツ超音波・・)に関して、
超音波とファインバブルを利用した応用技術を開発しています。
興味のある方は、メールでお問い合わせください
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波洗浄器(水槽表面)の表面残留応力緩和・均一化処理
超音波システム研究所は、
超音波の伝搬状態に関する、計測・解析・制御技術を、
対象物の音響特性として解析・応用することで、
超音波の非線形伝搬状態を制御可能にしました。
その結果、効率良く、
部品の表面残留応力を緩和して、表面全体を均一化する技術を開発しました。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うとともに
各種表面処理の均一化が実現しています。
特に、超音波の伝搬状態を
対象物のガイド波(表面弾性波・・)を考慮した設定・制御により、
対象物への効果的なダイナミックに変化する
非線形現象を含んだ一定の範囲の刺激として実現させる
制御方法・治工具・システム開発・・・具体的な方法・技術を開発しました。
金属部品、樹脂部品、粉体部材、・・・の各種の表面に対して
幅広い効果を確認しています。
この技術を
コンサルティング対応として提供しています
(詳細を見る)
オリジナル超音波モデルに基づいた制御システムの開発技術
<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
D1=客観的知識(学術的論理に裏付けられた理論)
D2=経験的知識(これまでの結果)
D3=観測データ(現実の状態)
からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
その組織的利用から複数のモデル案を作成する
2)統計的思考法を、
情報データ群(DS)の構成と、
それに基づくモデルの提案と検証の繰り返し
によって情報獲得を実現する思考法と捉える
3)AIC の利用等の評価方法により、
様々なモデルの比較を行い、最適なモデルを決定する
4)作成したモデルに基づいて、超音波装置・システムを構築する
5)時間と効率を考え、
以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
装置やシステムの具体的打ち合わせに入る
(詳細を見る)
複数のスイープ発振を組み合わせた超音波の発振制御技術
超音波システム研究所は、
超音波振動が伝搬する現象に関する分類方法を開発しました。
この分類に基づいて、非線形共振型超音波発振プローブを利用した、
超音波の非線形スイープ発振制御技術を開発しました。
この超音波のスイープ発振制御技術方法は、
超音波の伝搬状態に関する
主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
線形・非線形の共振効果を目的に合わせてコントロールします。
これまでの実験・データ測定解析から
効果的な利用方法を
以下のような
4つの推奨制御に分類することができました。
1:2種類のスイープ発振制御(線形型)
2:3種類のスイープ発振制御(非線形型)
3:4種類のスイープ発振制御(ミックス型)
4:上記の組み合わせによるダイナミック制御(変動型)
さらに変動型は、スイープ発振条件により、以下のような
3つの制御タイプに分類することができました。
1:線形変動制御型
2:非線形変動制御型
3:ミックス変動制御型(ダイナミック変動型)
(詳細を見る)
超音波洗浄機の設計・製造・開発コンサルティング
超音波システム研究所は、
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。
今回開発した技術により
水槽の最大長さ:3cm(液量5cc)~
600cm(液量8000リットル)の
超音波専用水槽に対して、
超音波洗浄や表面改質・・・に適した
超音波の利用効率、キャビテーションと音響流のダイナミック制御、
対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。
従来の水槽(あるいは振動子)設計や製造においては
音響特性に対する考慮が十分でないために、
振動の干渉・減衰による不均一・不安定な事象により
超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。
この技術は、
現状の水槽・振動子・・に対しても
問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
改善・改良を行うことができます。
ーー提供ノウハウーー
0)装置の設計・製造方法
1)超音波のONOFF制御
2)液循環のONOFF制御
3)最適化ノウハウの提供
4)メガヘルツ超音波の利用方法
(詳細を見る)
取扱会社 表面改質処理を行った、超音波振動子(600W以上)のファンクションジェネレーター発振技術
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発
表面改質処理を行った、超音波振動子(600W以上)のファンクションジェネレーター発振技術へのお問い合わせ
お問い合わせ内容をご記入ください。