超音波システム研究所
最終更新日:2024-03-18 13:18:38.0
低周波の共振現象と、高周波の非線形現象を制御可能な超音波プローブの発振制御方法2.00
基本情報低周波の共振現象と、高周波の非線形現象を制御可能な超音波プローブの発振制御方法
--音圧測定解析に基づいた、超音波の発振制御技術--
<<0.1Hz~900MHzの超音波伝搬制御>>
超音波システム研究所は、
各種装置・システムの振動状態について
測定解析に基づいた、
超音波プローブの発振制御方法を開発しました。
具体的には、
0.1Hz~900MHzの超音波伝搬状態を
目的(洗浄、加工、攪拌、溶接、めっき・・)に合せて、
ダイナミック制御する
(低周波の共振現象と、高周波の非線形現象を最適化する)
超音波プローブと発振制御方法に関する技術となります。
各種対象(装置、水槽、振動子、プローブ、治具、対象物・・・)について
基本的な音響特性(応答特性、相互作用・・)を解析確認することで、
目的の超音波伝搬状態を実現する、発振制御条件の最適化が可能になります。
超音波発振(スイープ発振、パルス発振、・・・)システム
超音波システム研究所は、
表面弾性波による非線形振動現象を利用した
超音波の発振制御技術を開発しました。
各種対象(水槽、振動子、プローブ、治具、対象物・・・)について
基本的な音響特性(応答特性、伝搬特性)を確認することで、
目的の超音波伝搬状態を、発振制御により可能になります。
オリジナルの非線形共振型超音波発振プローブによる、
発振条件(波形、出力、制御、・・)の設定により
高い音圧の共振現象と、
高調波の発生現象(非線形現象)による、
300MHz以上の高周波伝搬状態を最適化します。
この技術は、低出力の超音波発振を効率よく利用する方法です
デジタル制御による、
離散値的なファンクションジェネレータの特性を利用した
各種パラメータの設定がポイントです
非線形共振型超音波発振プローブを利用することで
共振現象による音圧レベルの制御範囲が大きく広がるため
従来の共振現象による音圧レベルとは大きく異なり
ダメージや破壊といった現象にならない
音圧測定解析に基づいた、制御設定の最適化が必要です
(詳細を見る)
メガヘルツ超音波の発振制御による、表面残留応力を緩和処理する技術
超音波システム研究所は、
1)超音波プローブの製造技術
2)超音波伝搬状態の評価技術
3)超音波を利用した表面検査技術
以上を応用して、表面残留応力の測定・解析・評価方法を開発してきました。
多数の実績から、超音波の利用技術として様々な応用が可能であると考え、
関連技術を含め公開しています。
具体例
表面処理ノウハウ:標準的な設定
出力 13-15V
矩形波 Duty47.1%
スイープ範囲 500kHz~13MHz 2秒
強度が低い対象(あるいは長時間の処理)に対する設定
出力 1-3V
矩形波 Duty47.1%
スイープ範囲 300kHz~3MHz 1秒
(あるいは 100kHz~5MHz 1秒)
注:対象物の超音波伝搬特性と、
ファンクションジェネレーターの発振特性により
発振条件は大きく変わります
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の各種相互作用を評価する技術ー音圧データのパワー寄与率解析
超音波振動の相互作用を測定解析評価する技術を開発
--音圧データのフィードバック解析:パワー寄与率の解析--
超音波システム研究所は、
超音波の音圧測定による、時系列データを解析することで、
各種相互作用を測定解析評価する技術を開発しました。
その結果、相互作用の評価に基づいた
超音波利用状態を最適化する技術に発展しています。
具体的には、以下のような事例があります
1)超音波の発振周波数・出力レベルの選択基準の最適化
2)超音波の発振制御条件の最適化
3)水槽・超音波(振動子)の設置に関する最適化
4)液循環装置・制御条件の最適化
5)水槽・超音波の設計条件の最適化
6)洗浄液・洗剤・溶剤・・の最適化
7)隣接水槽、治具・・との最適化
目的に合わせた、オリジナル超音波システムの開発が可能です。
(詳細を見る)
超音波プローブの発振方法(制御ノウハウのコンサルティング対応)
超音波システム研究所は、
オリジナル技術による、
新しい超音波プローブの制御技術を開発しました。
新しい超音波プローブによる測定システムの応用技術です。
目的に合わせた、専用の超音波プローブを
開発・製作・制御方法をコンサルティング対応します。
圧電素子の特性に関して、弾性波動を考慮した解析で、
各種の振動状態(モード)に基づいた
オリジナル超音波プローブを開発製造対応します。
測定の場合は、
オシロスコープに接続して利用することができます。
発振の場合は、
ファンクションジェネレーターに接続して利用することができます。
音圧測定データをフィードバック解析することにより
超音波の非線形現象(音響流)やキャビテーション効果を
数値化により確認・評価できるようになります。
超音波プローブは
利用目的を確認した「オーダーメード対応」しています
(詳細を見る)
ファンクションジェネレータを利用した超音波システム
超音波システム研究所は、
オリジナル超音波プロ-ブの音響特性に基づいた、
表面弾性波の非線形振動現象をコントロールする技術を開発しました。
ポイントは、2本の超音波プローブによる、スイープ発振条件の設定です
(基本的に、1本のプローブによる超音波発振制御では制御できません
2本のプローブの発振設定の組み合わせにより、
共振現象・非線形現象の発生状態を制御することができます)
利用目的に合わせた、周波数範囲で、
共振現象と非線形現象が制御可能になります
特に、強い刺激が必要な場合は、
低周波の共振現象を利用することで実現(例 ガラスの破壊)します
高い周波数の刺激が必要な場合には、
高周波の非線形現象を利用することで実現(例 700MHzの刺激)します
(詳細を見る)
オリジナル超音波モデルに基づいた制御システムの開発技術
<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
D1=客観的知識(学術的論理に裏付けられた理論)
D2=経験的知識(これまでの結果)
D3=観測データ(現実の状態)
からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
その組織的利用から複数のモデル案を作成する
2)統計的思考法を、
情報データ群(DS)の構成と、
それに基づくモデルの提案と検証の繰り返し
によって情報獲得を実現する思考法と捉える
3)AIC の利用等の評価方法により、
様々なモデルの比較を行い、最適なモデルを決定する
4)作成したモデルに基づいて、超音波装置・システムを構築する
5)時間と効率を考え、
以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
装置やシステムの具体的打ち合わせに入る
(詳細を見る)
超音波加工技術コンサルティングーーメガヘルツ超音波の発振制御ーー
超音波システム研究所は、
音圧測定解析装置(超音波テスター)と
メガヘルツの超音波発振制御プローブにより
物(工具・対象物・・・)の
音響特性(振動の応答特性・非線形現象)を利用する、
「超音波発振制御(加工)技術」を開発しました。
今回開発した技術により
「超音波の発振・出力制御」による
対象物への振動現象をコントロール可能にした、
超音波のダイナミック制御(洗浄・加工・撹拌・・)が、
発振制御プローブにより
超音波振動の非線形効果として利用可能になりました。
これは、加工・洗浄・表面改質・化学反応の促進・・・に対して
目的に合わせた
効果的な超音波利用技術です。
(詳細を見る)
複数のスイープ発振を組み合わせた超音波の発振制御技術
超音波システム研究所は、
超音波振動が伝搬する現象に関する分類方法を開発しました。
この分類に基づいて、非線形共振型超音波発振プローブを利用した、
超音波の非線形スイープ発振制御技術を開発しました。
この超音波のスイープ発振制御技術方法は、
超音波の伝搬状態に関する
主要となる周波数(パワースペクトル)の
ダイナミック特性(非線形現象の変化)により
線形・非線形の共振効果を目的に合わせてコントロールします。
これまでの実験・データ測定解析から
効果的な利用方法を
以下のような
4つの推奨制御に分類することができました。
1:2種類のスイープ発振制御(線形型)
2:3種類のスイープ発振制御(非線形型)
3:4種類のスイープ発振制御(ミックス型)
4:上記の組み合わせによるダイナミック制御(変動型)
さらに変動型は、スイープ発振条件により、以下のような
3つの制御タイプに分類することができました。
1:線形変動制御型
2:非線形変動制御型
3:ミックス変動制御型(ダイナミック変動型)
(詳細を見る)
取扱会社 低周波の共振現象と、高周波の非線形現象を制御可能な超音波プローブの発振制御方法
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発
低周波の共振現象と、高周波の非線形現象を制御可能な超音波プローブの発振制御方法へのお問い合わせ
お問い合わせ内容をご記入ください。