超音波システム研究所
最終更新日:2024-12-14 19:19:28.0
鉄めっき技術(日本バレル工業株式会社)を利用した、新しい超音波伝搬用具の開発・製造技術-Ver22.00
基本情報鉄めっき技術(日本バレル工業株式会社)を利用した、新しい超音波伝搬用具の開発・製造技術-Ver2
――超音波の非線形伝搬現象を利用する技術――(鉄めっき処理の超音波伝搬特性を応用)
超音波システム研究所は、
500Hzから900MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
日本バレル工業株式会社様の、鉄めっき技術を利用した、
新しい超音波伝搬用具(超音波プローブ・・・)を開発しました。
この超音波技術を、コンサルティング対応しています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
利用に関しては、デジタル制御による、
離散値的なファンクションジェネレータの特性を利用した
各種パラメータの設定がポイントです
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
超音波の伝搬特性
振動モードの検出(自己相関)
非線形現象の検出(バイスペクトル)
応答特性の検出(インパルス応答)
相互作用の検出(パワー寄与率)
メガヘルツの超音波洗浄器(音響流のコントロール技術)
超音波システム研究所は、
超音波洗浄器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象として
対処することが重要です
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
メガヘルツの超音波洗浄器(コンサルティング対応)
超音波システム研究所は、
超音波洗浄器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
超音波洗浄器による、メガヘルツの超音波発振制御技術を開発
超音波システム研究所は、
超音波洗浄器に関して、
ファンクションジェネレータと超音波プローブを応用することで、
100MHz以上の超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物へ100MHz以上の超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
対象物の超音波伝搬特性を確認することで、
オリジナル非線形共振現象(注1)の制御方法として
ファンクションジェネレータ発振条件を設定することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
(詳細を見る)
音圧データ解析による、超音波のシステム技術(コンサルティング)
超音波のシステム技術
1:専用水槽の開発技術
2:超音波振動子の改良技術
3:超音波伝搬状態の測定技術
4:超音波(音響流)制御技術
上記に関する システム技術 を提供しています。
目的に合わせた超音波の制御を可能にする技術です。
*超音波振動子改良技術ノウハウ・・・*
*超音波水槽の設計技術ノウハウ・・・*
*超音波伝搬状態の測定技術ノウハウ・・・*
*超音波(音響流)の制御技術ノウハウ・・・*
以上を提供させていただきます
詳細は 超音波システム研究所 にメールでお問い合わせください
(詳細を見る)
超音波の音圧測定解析システム「超音波テスターNA」
特徴(標準的な仕様の場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 100kHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて発振・測定を行います。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響性能として検出します。
超音波プローブ:概略仕様
測定範囲 0.01Hz~10MHz
発振範囲 1kHz~25MHz
伝搬範囲 1kHz~900MHz以上
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の音圧測定データ解析(「R」フリーな統計処理言語かつ環境)
超音波システム研究所は、
オリジナル製品(超音波テスター)を利用した、全く新しい、
<<表面弾性波の伝搬状態をコントロール技術>>を開発しました。
これまでに開発した、超音波の音圧測定解析技術について、
超音波の非線形現象に関する「測定・解析・評価」技術を応用します。
建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
に関して、新しい振動現象に基づいた対策が可能になりました。
この技術について、コンサルティング対応しています。
注:解析には下記ツールを利用します
注:OML(Open Market License)
注:TIMSAC(TIMe Series Analysis and Control program)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
<統計的な考え方>を利用した、超音波の測定・解析・評価技術
超音波システム研究所は、
超音波利用に関して、
<統計的な考え方>を利用した
効果的な「測定・解析・評価方法」に関する技術を開発しています。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
科学の中の統計学 赤池 弘次 (編集)より
<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。
正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。
<モデルと現状のシステムとの関係性について>
( 考察する場合の注意事項 )
1)先入観や経験は正しくないことがあると考える必要があります
2)モデルの本質を考えるためには、
圏論を利用することが有効だと考えています
(詳細を見る)
超音波データの統計数理(R言語・環境による解析)
超音波システム研究所は、
超音波利用に関して、
<統計的な考え方>を利用した
効果的な「測定・解析・評価方法」に関する技術を開発しています。
<統計的な考え方について>
統計数理には、抽象的な性格と具体的な性格の二面があり、
具体的なものとの接触を通じて
抽象的な考えあるいは方法が発展させられていく、
これが統計数理の特質である
超音波の研究について
「キャビテーションの効果を安定させるには統計的な見方が不可欠」
<モデルについて>
モデルは対象に関する理解、予測、制御等を
効果的に進めることを目的として構築されます。
正確なモデルの構築は難しく、
常に対象の複雑さを適当に"丸めた"形の表現で検討を進めます。
その意味で、
モデルの構成あるいは構築の過程は統計的思考が必要です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の各種相互作用を測定解析する技術に基づいた、超音波伝搬制御
超音波システム研究所は、
音圧測定解析装置(超音波テスター)と
メガヘルツの超音波発振制御プローブの製造技術により
超音波システムの音響特性(超音波の相互作用を測定解析)を考慮した、
「超音波の非線形伝搬制御技術」を開発しました。
今回開発した技術により
「超音波の発振(発振機・振動子・・)」による
対象物・超音波機器・治工具・・・を含めた、
各種の相互作用を測定解析に基づいて、
目的に合わせた、超音波のダイナミック制御が、可能になりました。
注:自己相関、バイスペクトル、パワー寄与率、インパルス応答
特に、
高調波に関する超音波と対象物の相互作用を検出・確認することで
複雑な形状や、精密部品の洗浄に対する効果的な
制御(液循環、治工具、洗浄物の固定方法、・・・)が明確になります。
従って、適切な
超音波周波数の選択や
異なる超音波周波数の振動子の組み合わせ・・
対象物に合わせた使用方法が決定できます。
これは、加工・洗浄・表面改質・化学反応の促進・・・に対して
目的に合わせた
効果的な超音波利用技術です。
(詳細を見る)
超音波の音圧測定解析に基づいた、超音波のダイナミック制御事例
超音波システム研究所は、
超音波振動の測定・解析システムを、2012年4月より、製造販売しています。
測定したデータについて、弾性波動を考慮した解析で、
超音波の非線形現象(音響流)やキャビテーション効果を
グラフにより目視確認できるようにしたシステムです。
複雑に変化する超音波の利用状態について、「非線形現象」を考慮するために、
時系列データの自己回帰モデルによる、自己相関・バイスペクトルを解析して
その変化・・・・を、評価・応用しています
目的に応じた新しい利用方法を多数実現しています
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
超音波とファインバブルによる非線形現象を利用した超音波洗浄機
超音波システム研究所は、
超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
超音波加工、攪拌、化学反応・・にも利用可能な、
マイクロバブルを利用した超音波洗浄機を開発しました。
推奨システム概要
1:超音波とマイクロバブルによる表面改質処理を行った
2種類の超音波振動子(標準タイプ 38kHz,72kHz)
2:超音波とマイクロバブルによる表面改質処理を行った
超音波専用水槽(標準タイプ 内側寸法:500*310*340mm)
3:脱気・マイクロバブル発生液循環システム
4:制御装置による、超音波出力と液循環の最適化制御システム
5:超音波テスターによる、音圧管理システム
*特徴
超音波専用水槽による効果的な装置です
効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です
洗浄・攪拌・表面改質・・・対象と目的により
2種類の超音波(振動子)を組み合わせて制御します
推奨タイプの組み合わせは
38kHz、72kHzの状態です
20μm以下のファインバブルを安定して利用する技術
(詳細を見る)
メガヘルツ超音波技術ーー表面弾性波のコントロールーー
超音波システム研究所は、
オリジナル超音波システム(音圧測定解析評価・発振制御)を利用した
超音波の伝搬特性・伝搬経路を考慮した、
表面弾性波のダイナミック制御技術を開発しました。
超音波の非線形制御システムを開発するための基礎技術です。
目的(洗浄・加工・攪拌・化学反応・・)に合わせた
様々な応用を実現しています。
各種材質・構造・サイズ・・・に対する
メガへルツ超音波の基礎実験を公開しています。
ポイントは
超音波伝搬に関する非線形現象を
効率の高い状態で制御可能にする
振動システムとしての
発振条件の設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、具体的なシステム技術を開発しました。
(詳細を見る)
超音波めっき処理技術(日本バレル工業株式会社)
超音波システム研究所は、
日本バレル工業株式会社様と共同で、
めっき処理に関して、
超音波とファインバブルを利用した「めっき方法」を実施しています。
超音波伝搬状態の測定・解析・評価に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい超音波制御技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象として
対処することが重要です
注1:超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
超音波の音圧測定プローブを製造・開発する技術を提供
超音波システム研究所は、
0.1Hz~900MHzの超音波伝搬状態を測定可能にする
超音波プローブ・音圧測定解析システムの製造・開発技術を、
コンサルティング提供します。
超音波の音圧測定解析システム(超音波テスター:標準システム)
1.内容
超音波洗浄機の音圧測定専用プローブ 1本
超音波測定汎用プローブ 1本
オシロスコープセット 1式
解析ソフト・説明書・各種インストールセット 1式
2.特徴(標準的な仕様の場合)
*測定(解析)周波数の範囲
仕様 0.1Hz から 10MHz
*超音波発振
仕様 1Hz から 100kHz
*表面の振動計測が可能
*24時間の連続測定が可能
*任意の2点を同時測定
*測定結果をグラフで表示
*時系列データの解析ソフトを添付
超音波プローブによる測定システムです。
超音波プローブを対象物に取り付けて発振・測定を行います。
測定したデータについて、
位置や状態と、弾性波動を考慮した解析で、
各種の音響性能として検出します。
(詳細を見る)
ステンレス製真空二重構造容器を利用した超音波発振制御プローブ
超音波システム研究所は、
900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブを、利用目的に合わせて製造する技術を開発しました。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
メガヘルツ超音波を利用した「振動技術」(振動モードの改善・調整)
超音波システム研究所は、
オリジナル製品(超音波システム)を利用した全く新しい、
<<振動をコントロールする技術>>を開発しました。
これまでに開発した、超音波の音圧測定解析・発振制御技術について、
超音波の非線形現象に関する「解析・評価」に基づいた、
メガヘルツ超音波の発振制御を行います。
ものの表面を伝搬する超音波のダイナミック特性を
測定・解析・評価したデータの蓄積から、
低周波(0.1Hz)~高周波(900MHz以上)の振動状態を
<測定・解析・評価>できる技術を応用しています。
建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
製造装置・システム全体の複雑な振動状態、・・・
に関して、新しい振動測定解析に基づいた対策が可能になりました。
これは、新しい方法および技術です、
これまでの実施結果から
様々な応用事例が発展しています。
特に、非常に低い周波数の振動や
不規則に変動する振動に対しても計測・対応が可能です。
(詳細を見る)
音圧測定解析に基づいた、超音波プローブの非線形発振制御技術
超音波システム研究所は、
ファンクションジェネレータの二つの発振チャンネルから
2種類の超音波プローブを発振制御することで、
各種の相互作用を最適化して
超音波の非線形現象(注)をコントロールする技術を開発しました。
注:非線形(共振)現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる、超音波振動の共振現象
各種部材の超音波伝搬特性を目的に合わせて最適化することで
効率の高い超音波発振制御が可能になります。
超音波テスターの音圧データの測定解析により
表面弾性波のダイナミックな変化を、
利用目的に合わせて、コントロールするシステム技術です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
オリジナル超音波システム(音圧測定解析、発振制御)の製造販売
超音波の測定解析と発振制御が容易にできる、超音波システム
超音波システム研究所は、
超音波の測定解析が容易にできる
「超音波テスターNA(推奨タイプ)」と
超音波の発振制御が容易にできる
「超音波発振システム(20MHz)」
をセットにしたシステムによる実験を公開しています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 0.5kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
注:超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
超音波プローブの製造・評価技術をコンサルティング提供
超音波システム研究所は、
<超音波伝搬特性(音響特性)の分類>に基づいた、
500Hzから900MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造・評価技術を開発しました。
目的に合わせた、
オリジナル超音波発振制御プローブの製造開発が可能です。
この技術を、コンサルティング提供しています
興味のある方はメールでお問い合わせください
超音波プローブの伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(発振電圧と受信電圧の相互作用:パワー寄与率を解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
mulnos:パワー寄与率の解析関数
(詳細を見る)
超音波プローブの発振制御による表面検査技術
超音波システム研究所は、
対象物の表面を伝搬する超音波データの解析実績から
メガヘルツの超音波発振による、新しい表面検査技術を開発しました。
超音波プローブの発振制御による
「音圧・振動」測定・解析技術を応用した方法です。
目的(対象物の表面を伝搬する振動モード)に合わせた
超音波プローブの開発対応による、
コンサルティング・評価技術の説明対応を行っています。
新しい超音波発振制御技術の応用です。
対象物の音響特性に合わせた、
メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
対象物の表面状態に関する新しい特徴を検出することが可能です。
特に、発振・受信の組み合わせによる
応答特性を利用した
基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
超音波振動の新しい評価パラメータとなる基本技術です。
表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
測定・解析・評価に基づいて
論理モデルを構成・修正しながら検討することで
目的(評価)に合わせた効果的な利用を可能にしました。
(詳細を見る)
超音波とファインバブルのダイナミック制御による表面処理技術
<<脱気ファインバブル発生液循環装置>>
1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させる。
2)キャビテーションにより溶存気体の気泡が発生する。
上記が脱気液循環装置の状態。
3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなる。
4)適切な液循環により、
20μ以下のファインバブルが発生する。
上記が脱気マイクロバブル発生液循環装置の状態。
5)上記の脱気ファインバブル発生液循環装置に対して
超音波を照射すると
ファインバブルを超音波が分散・粉砕して
ファインバブルの測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなる
上記の状態が、超音波を安定して制御可能にした状態。
6)超音波を安定して制御可能な状態に対して
オリジナル製品:メガヘルツの超音波発振制御プローブにより
メガヘルツ(1-20MHz)の超音波を発振制御する。
音圧レベルの制御方法は、液循環とメガヘルツの超音波の
オリジナル非線形共振現象をコントロールすることで
効果的なダイナミック状態に設定・制御する。
(詳細を見る)
オリジナル超音波プローブを利用した、超音波発振システム
超音波システム研究所は、
オリジナル超音波システム(音圧測定解析、発振制御)により、
対象物に伝搬する表面弾性波(超音波振動)の、
非線形現象をコントロールする技術を開発しました。
<<超音波の非線形振動現象をコントロールする技術>>
1)ファンクションジェネレータによる発振制御を
対象物の音響特性に合わせて、
発振出力、波形、変化・・・させる制御設定技術
2)超音波発振電圧の変化を、制御可能にする
超音波発振制御プローブの、発振面の調整を含めた製造技術
3)100メガヘルツの超音波振動変化を、計測可能にする
超音波測定プローブの、発振面の調整を含めた製造技術
4)スイープ発振条件の最適化技術
上記の技術を利用して
目的に合わせた
超音波の伝搬状態をコントロール(最適化)します。
注:対象物の音響特性と超音波の発振制御による相互作用について
非線形現象に関する音圧データの解析評価に基づいて
超音波のダイナミック制御・・・・を行います
(超音波テスターで、音圧の測定・解析・確認・評価を行っています)
(詳細を見る)
超音波プローブの表面弾性波を利用した、表面改質技術
超音波システム研究所は、
超音波の伝搬状態に関する、計測・解析・制御技術を、
対象物の音響特性として利用することで、、
超音波の非線形伝搬状態を制御可能にしました。
その結果、効率良く、
部品の表面残留応力を緩和する技術を開発・発展しました。
この表面残留応力を緩和する技術により
金属疲労・・に対する疲れ強さの改善を行うとともに
各種表面処理の均一化を実現しています。
特に、超音波の伝搬状態を
対象物のガイド波(表面弾性波・・)を考慮した設定・制御により、
対象物への効果的なダイナミックに変化する
非線形現象を含んだ刺激として実現させる
制御方法・治工具・・・具体的な方法・技術を開発しました。
金属部品、樹脂部品、粉体部材、・・・の各種に対して
幅広い効果を確認しています。
これは、新しい超音波による表面処理技術であり、
音響特性による一般的な効果を含め
新素材の開発、攪拌、分散、洗浄、化学反応実験・・・
に大きな特徴的な固有の操作技術として、
利用・発展できると考え、提案・実施しています。
(詳細を見る)
メガヘルツ超音波発振制御による加工方法の提案
超音波システム研究所は、
オリジナル製品:超音波システム(音圧測定解析、発振制御)による
超音波加工技術のコンサルティング対応を行っています。
現状の超音波加工に対して
音圧測定・解析に基づいた、超音波追加・改良方法を提案・実施します。
具体的には、
超音波の測定解析が容易にできる
「オリジナル製品:超音波テスターNA(推奨タイプ)」による
加工機械・・の測定・確認により
超音波追加について打ち合わせ相談します。
超音波追加に合わせて
超音波の発振制御が容易にできる
「オリジナル製品:超音波発振システム(1MHz、20MHz)」
の利用を提案します。
(詳細を見る)
超音波素子(圧電素子)の超音波伝搬特性を調整する技術
超音波システム研究所は、
超音波システム(音圧測定、発振制御)を利用した、
超音波の伝搬状態に関する、測定・解析・評価実績に基づいて
超音波素子(圧電素子)の超音波伝搬特性を調整する技術を開発しました。
超音波素子(圧電素子)の表面弾性波を目的に合わせて利用するために、
素子表面に対して、特殊な表面処理を行います。
伝搬する超音波の音圧レベル・周波数範囲について調整可能にしています。
超音波(発振制御)と表面弾性波の組み合わせによる
ダイナミックな超音波伝搬制御を実現したことで、
音圧データの解析による特性から調整技術に発展しました。
ポイントは
表面弾性波による非線形現象を
効率の高い状態で制御可能にする
発振条件の最適化設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、システム技術をコンサルティング対応しています。
(詳細を見る)
超音波伝搬現象の分類に基づいた、超音波プローブの製造技術
超音波システム研究所は、
超音波伝搬現象の分類に基づいた、
900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を開発しました。
目的に合わせた、
オリジナル超音波発振制御プローブを製造開発が可能です。
ポイントは、超音波プローブの超音波伝搬特性の確認です。
超音波のダイナミックな変化に対する、応答特性が最も重要です。
この特性により、高調波の発生可能範囲が決定します。
現状では、以下の範囲に対して、製造対応可能となっています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<材質・形状・構造・・・による音響特性>を
把握(測定・解析・評価)することで、
目的に合わせた超音波の伝搬状態を実現します
この技術を、コンサルティング提供します
興味のある方はメールでお問い合わせください
(詳細を見る)
表面弾性波の相互作用をコントロールする超音波技術
超音波システム研究所は、
ファンクションジェネレータの一つの発振チャンネルから
同時に2種類の超音波プローブを発振することで発生する
相互作用を利用して
超音波の非線形現象(注)をコントロールする技術を開発しました。
注:非線形(共振)現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
各種部材の超音波伝搬特性を目的に合わせて最適化することで
効率の高い超音波発振制御が可能になります。
超音波テスターの音圧データの測定解析により
表面弾性波のダイナミックな変化を、
利用目的に合わせて、コントロールするシステム技術です。
実用的には、
複数(2種類)の超音波プローブによる
複数(2種類)の発振(スイープ発振、パルス発振)が
複雑な振動現象(オリジナル非線形共振現象)を発生させることで
高い音圧で高い周波数の伝搬状態、あるいは、
目的の固有振動数に合わせた
低い周波数の高い音圧レベルの伝搬状態を実現します。
(詳細を見る)
取扱会社 鉄めっき技術(日本バレル工業株式会社)を利用した、新しい超音波伝搬用具の開発・製造技術-Ver2
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発
鉄めっき技術(日本バレル工業株式会社)を利用した、新しい超音波伝搬用具の開発・製造技術-Ver2へのお問い合わせ
お問い合わせ内容をご記入ください。