超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-08-03 12:32:55.0

  •  
  • カタログ発行日:2019/3/16

超音波・マイクロバブル利用実績の公開:鉄めっき処理技術の開発1.0

基本情報超音波・マイクロバブル利用実績の公開:鉄めっき処理技術の開発

超音波を利用しためっき処理 ーー日本バレル工業株式会社ーー

超音波システム研究所は、
500Hzから900MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を発展させ、
日本バレル工業株式会社様の、鉄めっき技術を利用した、
新しい超音波伝搬用具を開発しました。
この超音波技術を、コンサルティング対応しています。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 1.0kHz~25MHz
 伝搬範囲 0.5kHz~900MHz以上(解析確認)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

利用に関しては、デジタル制御による、
離散値的なファンクションジェネレータの特性を利用した
各種パラメータの設定がポイントです

日本バレル工業株式会社
〒734-0022 広島市南区東雲1丁目2-7

超音波の音圧測定解析システム(オシロスコープ10MHzタイプ)

超音波の音圧測定解析システム(オシロスコープ10MHzタイプ) 製品画像

超音波システム研究所(所在地:東京都八王子市)は、
超音波の測定解析が容易にできる
超音波テスターNA(オシロスコープ100MHzタイプ)を開発しました

特徴(標準的な仕様)

  *測定(解析)周波数の範囲
   仕様 0.1Hz から 10MHz
  *超音波発振
   仕様 1Hz から 1MHz
  *表面の振動計測が可能
  *24時間の連続測定が可能
  *任意の2点を同時測定
  *測定結果をグラフで表示
  *時系列データの解析ソフトを添付

超音波プローブによる測定システムです。
 超音波プローブを対象物に取り付けて発振・測定を行います。
 測定したデータについて、
 位置・状態・弾性波動を考慮した解析で、
 各種の音響性能として検出します。

 (詳細を見る

超音波洗浄機の製造・開発コンサルティング

超音波洗浄機の製造・開発コンサルティング 製品画像

超音波システム研究所は、
超音波の制御を効率良く行うことができる
<<脱気ファインバブル(マイクロバブル)発生液循環装置>>による
超音波洗浄機の製造・開発方法・・をコンサルティング対応しています。

超音波洗浄機(脱気ファインバブル発生液循環システム)
--超音波洗浄システム KT0600K--

1)洗浄槽
 材質    :SUS304(t= 3.0mm )
 寸法(内寸):W530×D530×H370mm

2)液循環
 脱気ファインバブル発生液循環システム
 公称流量 12-30L/MIN

3)超音波(電源:AC 100V)MU-300
 振動子サイズ 260*150*90mm
 発振機サイズ 320*420*145mm
 周波数 1) 28kHz  出力 300W(MAX)
 周波数 2) 40kHz  出力 300W(MAX)
 周波数 3) 72kHz  出力 300W(MAX)


 (詳細を見る

メガヘルツの超音波発振による、新しい表面検査技術

メガヘルツの超音波発振による、新しい表面検査技術 製品画像

超音波システム研究所は、
 対象物の表面を伝搬する超音波データの解析実績から
 メガヘルツの超音波発振による、新しい部品検査技術を開発しました。

オリジナル超音波プローブの発振制御による
 「音圧・振動」測定・解析技術を応用した方法です。

目的(対象物の表面を伝搬する振動モード)に合わせた
 超音波プローブの開発対応による、
 コンサルティング・超音波評価技術の説明対応を行っています。

新しい超音波発振制御技術の応用です。
 対象物の音響特性に合わせた、
 メガヘルツの超音波伝搬状態に関する非線形現象を利用することで
 対象物の表面状態に関する新しい特徴を検出することが可能です。

特に、発振・受信の組み合わせによる
 応答特性を利用した
 基板部品の表面検査や、精密洗浄部品の事前評価・・・に関して、
 超音波振動の新しい評価パラメータとなる基本技術です。

表面弾性波の伝搬現象に関する、超音波のダイナミック特性を
 測定・解析・評価に基づいて
 論理モデルを構成・修正しながら検討することで
 目的(評価)に合わせた効果的な利用を可能にしました。
 (詳細を見る

超音波の非線形現象制御による化学反応制御装置

超音波の非線形現象制御による化学反応制御装置 製品画像

超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用して
「超音波による化学反応を制御する技術」を開発しました。

この技術は
 容器の相互作用を測定確認することで
 メガヘルツの超音波発振プローブによる超音波制御(注)により
 目的に合わせた、超音波(キャビテーション・音響流)を制御します。

注:超音波制御
2種類の非線形共振型超音波発振プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧の共振現象と、
高調波の発生現象(非線形現象)による、
30MHz以上の高周波伝搬状態を、ダイナミック制御します。

注:超音波制御「精密洗浄事例」
 スイープ発振 70kHz~15MHz 15W
 パルス発振  13MHz 8W

注:超音波制御「ナノレベルの攪拌事例」
 スイープ発振 880kHz~22MHz 12W
 パルス発振  14MHz 10W

特に、
 音響流制御による、高調波のダイナミック特性により
 ナノレベルの反応・対応が実現しています

 (詳細を見る

2台のファンクションジェネレータを利用した、超音波制御技術

2台のファンクションジェネレータを利用した、超音波制御技術 製品画像

超音波システム研究所は、
2台のファンクションジェネレータを利用する
全く新しい超音波のダイナミック制御技術を開発しました。

2種類の異なる波形による、異なるタイプの(スイープ)発振により、
超音波の非線形現象と共振現象をコントロールする技術を実現します。

この技術を応用して、
部品の表面残留応力を緩和する、実用的な方法、・・・
様々な応用技術を開発し、コンサルティング対応しています。

標準設定
1)3MHz~20MHzのスイープ発振制御1
2)60kHz~13MHzのスイープ発振制御2
3)42kHz 35W(超音波洗浄器)
 による、超音波のダイナミック制御
 (ダイナミック変動型の超音波伝搬制御を実現)

注:超音波洗浄器の水槽表面に関して、
 超音波発振制御プローブと
 脱気ファインバブル発生液循環装置により
 表面残留応力緩和・均一化処理を行っています。
 均一化の効果として、
 200MHz以上の高調波による超音波制御が実現しています。

 (詳細を見る

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング 製品画像

超音波専用水槽(オリジナル製造方法)による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
複数の超音波と
脱気ファインバブル発生液循環装置を
音圧測定解析に基づいて発振制御します

様々な、組み合わせと
 使用(制御)方法を提案しています

ポイントは
目的の対象に合わせた超音波伝搬状態を実現させる
専用水槽内の「溶存酸素濃度分布」と「液循環」です

<<脱気ファインバブル(マイクロバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

 (詳細を見る

超音波の非線形現象を利用した、ナノレベルの攪拌技術

超音波の非線形現象を利用した、ナノレベルの攪拌技術 製品画像

超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用した
 効果的な攪拌(乳化・分散・粉砕)技術を開発しました。

この技術は
 表面検査による間接容器、超音波水槽、その他事項具・・の
 超音波伝搬特徴(解析結果)を利用(評価)して
 超音波(キャビテーション・音響流)を制御します。

さらに、
 具体的な対象物の構造・材質・音響特性に合わせ、
 効果的な超音波(キャビテーション・音響流)伝搬状態を、
 ガラス容器・超音波・対象物・・の相互作用に合わせて、
 超音波の発振制御により実現します。

特に、
 音響流制御による、高調波のダイナミック特性により
 ナノレベルの対応が実現しています

金属粉末をナノサイズに分散する事例から応用発展させました。

2023.11 非線形現象を制御する超音波発振制御技術を開発
2024. 1 超音波振動の相互作用を測定解析評価する技術を開発
2024. 2 メガヘルツ超音波による表面処理技術を開発
2024. 4 共振現象と非線形現象の最適化技術を開発 
 (詳細を見る

超音波とファインバブルのダイナミック制御による表面処理技術

超音波とファインバブルのダイナミック制御による表面処理技術 製品画像

<<脱気ファインバブル発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させる。
2)キャビテーションにより溶存気体の気泡が発生する。
上記が脱気液循環装置の状態。

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなる。
4)適切な液循環により、
20μ以下のファインバブルが発生する。
上記が脱気マイクロバブル発生液循環装置の状態。

5)上記の脱気ファインバブル発生液循環装置に対して
超音波を照射すると
ファインバブルを超音波が分散・粉砕して
ファインバブルの測定を行うと
ウルトラファインバブルの分布量がファインバブルの分布量より多くなる
上記の状態が、超音波を安定して制御可能にした状態。

6)超音波を安定して制御可能な状態に対して
オリジナル製品:メガヘルツの超音波発振制御プローブにより
メガヘルツ(1-20MHz)の超音波を発振制御する。
音圧レベルの制御方法は、液循環とメガヘルツの超音波の
オリジナル非線形共振現象をコントロールすることで
効果的なダイナミック状態に設定・制御する。
 (詳細を見る

メガヘルツ超音波の発振制御による、表面残留応力を緩和処理する技術

メガヘルツ超音波の発振制御による、表面残留応力を緩和処理する技術 製品画像

超音波システム研究所は、
1)超音波プローブの製造技術
2)超音波伝搬状態の評価技術
3)超音波を利用した表面検査技術
以上を応用して、表面残留応力の測定・解析・評価方法を開発してきました。
多数の実績から、超音波の利用技術として様々な応用が可能であると考え、
関連技術を含め公開しています。

具体例
表面処理ノウハウ:標準的な設定
出力 13-15V
矩形波 Duty47.1%
スイープ範囲 500kHz~13MHz 2秒

強度が低い対象(あるいは長時間の処理)に対する設定
出力 1-3V
矩形波 Duty47.1%
スイープ範囲 300kHz~3MHz 1秒
(あるいは 100kHz~5MHz 1秒)

注:対象物の超音波伝搬特性と、
 ファンクションジェネレーターの発振特性により
 発振条件は大きく変わります

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

超音波による液体(特に溶剤)の均一化・流動性改善技術

超音波による液体(特に溶剤)の均一化・流動性改善技術 製品画像

--超音波の非線形現象を制御する技術による
 ナノレベルの攪拌・乳化・分散・粉砕技術--

超音波処理1::「粉末のナノ化」
超音波処理2::「液体の均一化・流動性改善」

超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用した
「超音波による液体の均一化・流動性改善技術」を開発しました。

この技術は
 表面検査による間接容器、超音波水槽、その他事項具・・の
 超音波伝搬特徴(解析結果)を利用(評価)して
 超音波(キャビテーション・音響流)を制御します。

さらに、
 具体的な対象物の構造・材質・音響特性に合わせ、
 効果的な超音波(キャビテーション・音響流)伝搬状態を、
 ガラス容器・超音波・対象物・・の相互作用に合わせて、
 超音波の発振制御により実現します。

特に、
 音響流制御による、高調波のダイナミック特性により
 ナノレベルの対応が実現しています

超音波の伝搬特性
1)振動モード(自己相関)
2)非線形現象(バイスペクトル)
3)応答特性(インパルス応答)
4)相互作用(パワー寄与率)
 (詳細を見る

超音波とファインバブルを利用した「めっき処理」コンサルティング

超音波とファインバブルを利用した「めっき処理」コンサルティング 製品画像

超音波システム研究所は、
 2015年から、
 日本バレル工業株式会社様と共同で、
 ファインバブルとメガヘルツの超音波を利用した、
 超音波めっき処理技術を開発しています。

注:2024年8月現在、良好な結果に基づいて
 様々な応用技術として継続発展中です

1)洗浄・加工・溶接・めっき・・表面処理・・・
2)化学反応・液体の均一化・攪拌・・・
3)検査・評価・・・
4)目的に合わせた、超音波とファインバアブルの最適化制御
 

現在、日本バレル工業株式会社様と共同で、
鉄めっき処理(鉄粉・アモルファス・メガヘルツ超音波・・)に関して、
超音波とファインバブルを利用した応用技術を開発しています。

興味のある方は、メールでお問い合わせください

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

取扱会社 超音波・マイクロバブル利用実績の公開:鉄めっき処理技術の開発

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発 2024.12 超音波プローブの非線形発振制御技術を開発 2024.12 超音波伝搬状態による表面検査技術を開発

超音波・マイクロバブル利用実績の公開:鉄めっき処理技術の開発へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例