超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-08-04 18:45:04.0

  •  
  • カタログ発行日:2024/6/29

超音波による、音響流(非線形現象)の「流れとかたち・コンストラクタル法則」1.00

基本情報超音波による、音響流(非線形現象)の「流れとかたち・コンストラクタル法則」

--コンストラクタル法則を利用した、音響流のダイナミック制御技術--

超音波の「流れとかたち・コンストラクタル法則」
--コンストラクタル法則を利用した、音響流のコントロール技術--

超音波システム研究所は、
 流れとかたちに関する「コンストラクタル法則」を利用した、
 超音波利用(非線形現象の制御)技術を開発しました。

川の流れの観察をヒントに開発しました。

超音波利用に関して、流れの観察経験により
音響流(超音波の非線形現象)を直感的にとらえられると考えています。

音響流<一般概念>
有限振幅の波が
 気体または液体内を伝播するときに、
 音響流が発生する。

音響流は、
 波のパルスの粘性損失の結果、
 自由不均一場内で生じるか、
 または
 音場内の
 障害物(洗浄物・治具・液循環)の近傍か
 あるいは
 振動物体の近傍で
 慣性損失によって生じる
 物質の一方性定常流である。

超音波伝播現象における
 「非線形現象」を測定・解析・評価・利用(制御)する技術を
 流れをよくするという「コンストラクタル法則(constractal-law)」で
 整理することで、超音波技術にまとめています。

超音波伝搬現象の分類(コンサルティング対応)

超音波伝搬現象の分類(コンサルティング対応) 製品画像

超音波システム研究所は、
 超音波伝搬状態の測定データを
 バイスペクトル解析することで、
 超音波振動が伝搬する現象に関する分類方法を開発しました。


今回開発した分類に関する方法は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 線形・非線形の共振効果を推定します。

これまでのデータ解析から
 効果的な利用方法を
 以下のような
 4つのタイプに分類することができました。

 1:線形型
 2:非線形型
 3:ミックス型
 4:変動型

 上記の各タイプに基づいた装置開発・制御設定・・・
 成功事例が多数あります。


この技術を
 コンサルティング対応として提供します

 (詳細を見る

超音波洗浄機のダイナミック液循環システム(コンサルティング対応)

超音波洗浄機のダイナミック液循環システム(コンサルティング対応) 製品画像

(超音波洗浄機の測定・解析に基づいた制御システムを開発)

超音波システム研究所は、
 超音波洗浄機の液体に伝搬する
 超音波洗浄機の状態を測定・解析する技術を応用して、
 水槽の構造・強度・製造条件・・・による影響と
 液循環の状態を
 目的に合わせた超音波洗浄機の状態に
 設定・制御する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性(注1)を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注2)により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。

注1:超音波システム研究所のオリジナル技術
   「音色」を考慮した「超音波発振制御」技術を利用しています

注2:洗浄機と洗浄液と空気の
  各境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない洗浄水槽でも対応可能です。

  ミクロ流の自己組織化について
  脱気・曝気・超音波・水槽表面の弾性波動・・・により
  音響流のコントロールが可能になりました。
 
 (詳細を見る

超音波洗浄機の音響流制御システム(コンサルティング対応)

超音波洗浄機の音響流制御システム(コンサルティング対応) 製品画像

(超音波洗浄機の測定・解析に基づいた制御システムを開発)

超音波システム研究所は、
 超音波洗浄機の液体に伝搬する
 超音波洗浄機の状態を測定・解析する技術を応用して、
 水槽の構造・強度・製造条件・・・による影響と
 液循環の状態を
 目的に合わせた超音波洗浄機の状態に
 設定・制御する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性(注1)を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注2)により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。

注1:超音波システム研究所のオリジナル技術
   「音色」を考慮した「超音波発振制御」技術を利用しています

注2:洗浄機と洗浄液と空気の
  各境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない洗浄水槽でも対応可能です。

  ミクロ流の自己組織化について
  脱気・曝気・超音波・水槽表面の弾性波動・・・により
  音響流のコントロールが可能になりました。
 
 (詳細を見る

超音波洗浄機の改良技術(コンサルティング対応)

超音波洗浄機の改良技術(コンサルティング対応) 製品画像

超音波システム研究所は、
オリジナル製品:超音波システム(音圧測定解析、発振制御)による
超音波洗浄機の改良(コンサルティング対応)を行っています。

現状の超音波洗浄機に対して
 音圧測定・解析に基づいた、改良方法を提案・実施します。

具体的には、
超音波の測定解析が容易にできる
 「オリジナル製品:超音波テスターNA(推奨タイプ)」による
 超音波洗浄機の測定・確認により
 改善レベルについて打ち合わせ相談します。

改善レベルに合わせて
超音波の発振制御が容易にできる
「オリジナル製品:超音波発振システム(1MHz、20MHz)」
 の利用を提案します。

水槽や洗浄液、洗浄物や洗浄レベルの状態・・・により
 脱気ファインバブル発生液循環装置を提案します。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

 (詳細を見る

超音波超音波洗浄機の製造・開発・コンサルティング対応

超音波超音波洗浄機の製造・開発・コンサルティング対応 製品画像

超音波システム研究所は、
 超音波制御が簡単にできる、標準タイプの超音波装置に関して
 標準サイズからの変更による超音波伝搬状態の影響に関する
 測定・解析・評価技術を開発しました。
この技術を応用して、
 目的に合わせた、水槽サイズの超音波システムを
 製造・開発・コンサルティング対応します。

装置概要

*超音波システム(超音波洗浄機)

1:超音波
2:超音波水槽
3:循環ポンプ(脱気・マイクロバブル発生液循環システム)
4:タイマー


超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数

 (詳細を見る

音圧測定解析に基づいた、超音波技術のコンサルティング

音圧測定解析に基づいた、超音波技術のコンサルティング 製品画像

<<超音波の音圧データ解析・評価>>

1)時系列データに関して、
多変量自己回帰モデルによるフィードバック解析により
測定データの統計的な性質(超音波の安定性・変化)について
解析評価します

2)超音波発振による、発振部が発振による影響を
インパルス応答特性・自己相関の解析により
対象物の表面状態・・に関して
超音波振動現象の応答特性として解析評価します

3)発振と対象物(洗浄物、洗浄液、水槽・・)の相互作用を
パワー寄与率の解析により評価します

4)超音波の利用(洗浄・加工・攪拌・・)に関して
超音波効果の主要因である対象物(表面弾性波の伝搬)
あるいは対象液に伝搬する超音波の
非線形(バイスペクトル解析結果)現象により
超音波のダイナミック特性を解析評価します

この解析方法は、
複雑な超音波振動のダイナミック特性を
時系列データの解析手法により、
超音波の測定データに適応させる
これまでの経験と実績に基づいて実現しています。

超音波の伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出
 (詳細を見る

ファインバブルによる音響流制御を利用した超音波洗浄機

ファインバブルによる音響流制御を利用した超音波洗浄機 製品画像

超音波システム研究所は、
 超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
 超音波加工、攪拌、化学反応・・にも利用可能な、
 ファインバブルを利用した超音波洗浄機を開発しました。

推奨システム概要

1:超音波とファインバブルによる表面改質処理を行った
  超音波振動子

2:超音波とファインバブルによる表面改質処理を行った
  超音波専用水槽

3:脱気・ファインバブル(マイクロバブル)発生液循環システム

4:制御装置による、超音波と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム


注意:水槽・振動子・治工具については、エージング処理により
   音響特性の調整対応が可能です

*特徴

超音波専用水槽による効果的な洗浄装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分となります
(通常の水槽を、超音波とファインバブルで表面改質対応します)

洗浄・攪拌・表面改質・・・対象と目的により
超音波(キャビテーション・音響流)を制御します


 (詳細を見る

ファインバブルによる非線形現象を利用した超音波洗浄機

ファインバブルによる非線形現象を利用した超音波洗浄機 製品画像

超音波システム研究所は、
 超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
 超音波加工、攪拌、化学反応・・にも利用可能な、
 マイクロバブルを利用した超音波洗浄機を開発しました。

推奨システム概要

1:超音波とマイクロバブルによる表面改質処理を行った
  2種類の超音波振動子(標準タイプ 38kHz,72kHz)

2:超音波とマイクロバブルによる表面改質処理を行った
  超音波専用水槽(標準タイプ 内側寸法:500*310*340mm)

3:脱気・マイクロバブル発生液循環システム

4:制御装置による、超音波出力と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム

*特徴

超音波専用水槽による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
2種類の超音波(振動子)を組み合わせて制御します

推奨タイプの組み合わせは
 38kHz、72kHzの状態です

20μm以下のファインバブルを安定して利用する技術
 (詳細を見る

超音波の非線形スイープ発振制御技術ーー発振波形と制御ノウハウーー

超音波の非線形スイープ発振制御技術ーー発振波形と制御ノウハウーー 製品画像

超音波システム研究所(所在地:東京都八王子市)は、
表面弾性波の非線形振動現象を利用した
新しい超音波の非線形スイープ発振制御技術を開発しました。

複雑な振動状態について、
 1)線形現象と非線形現象
 2)相互作用と各種部材の音響特性
 3)音と超音波と表面弾性波
 4)低周波と高周波(高調波と低調波)
 5)発振波形と出力バランス
 6)発振制御と共振現象
 ・・・
 上記について
 音圧測定データに基づいた
 統計数理モデルにより
 表面弾性波の新しい評価方法で最適化します。

超音波洗浄、加工、攪拌、・・・表面検査、・・ナノテクノロジー、・・
応用研究・・・ 様々な対応が可能です。

 (詳細を見る

超音波による、共振現象と非線形現象の最適化技術

超音波による、共振現象と非線形現象の最適化技術 製品画像

超音波システム研究所は、
 オリジナル超音波システムによる、
 超音波伝搬状態の各種解析結果を、
 抽象代数モデルに基づいて、超音波振動の相互作用を最適化(注)する、
 超音波<ダイナミック制御>技術を開発しました。

注:共振現象(低調波)と非線形現象(高調波)を
  論理モデルに基づいて発振制御条件の設定によりコントロールする

これまでの制御技術に対して、
 各種伝搬用具を含めた、超音波振動の伝搬経路全体に関する
 新しい測定・評価パラメータ(注)により
 超音波利用の目的(洗浄、攪拌、加工・・) に合わせた、
 最適な制御状態を設定・実施する技術です。

これは具体的な応用がすぐにできる方法・技術です
 コンサルティングとして提案・対応しています
 (ナノレベルの精密洗浄や攪拌実績が増えています)

注:オリジナル技術(超音波テスター)により
 水槽、振動子、対象物、治工具・・・の
 伝搬状態に関するダイナミックな変化を測定・解析・評価します。
(パラメータ:
 パワースペクトル、自己相関、バイスペクトル、
 パワー寄与率、インパルス応答特性、ほか)
 (詳細を見る

超音波振動子の表面残留応力緩和処理技術(コンサルティング対応)

超音波振動子の表面残留応力緩和処理技術(コンサルティング対応) 製品画像

超音波システム研究所は、
超音波の伝搬状態に関する、測定・解析・評価技術を応用して、
超音波とファインバブルによる、
超音波振動子の表面残留応力を緩和する技術を公開しています。

この表面残留応力を緩和する技術により
 金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。

その結果、超音波水槽をはじめ、様々な部品の効果が実証されています。

 (詳細を見る

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング

音圧データ解析に基づいた超音波洗浄システムの開発コンサルティング 製品画像

超音波専用水槽(オリジナル製造方法)による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
複数の超音波と
脱気ファインバブル発生液循環装置を
音圧測定解析に基づいて発振制御します

様々な、組み合わせと
 使用(制御)方法を提案しています

ポイントは
目的の対象に合わせた超音波伝搬状態を実現させる
専用水槽内の「溶存酸素濃度分布」と「液循環」です

<<脱気ファインバブル(マイクロバブル)発生液循環装置>>

1)ポンプの吸い込み側を絞ることで、キャビテーションを発生させます。
2)キャビテーションにより溶存気体の気泡が発生します。
上記が脱気液循環装置の状態です

3)溶存気体の濃度が低下すると
キャビテーションによる溶存気体の気泡サイズが小さくなります。
4)適切な液循環により、
20μ以下のファインバブル(マイクロバブル)が発生します。
上記が脱気マイクロバブル発生液循環装置の状態です。

 (詳細を見る

超音波洗浄機の「流れとかたち・コンストラクタル法則」

超音波洗浄機の「流れとかたち・コンストラクタル法則」 製品画像

超音波システム研究所は、
 流れとかたちに関する「コンストラクタル法則」を利用した、
 超音波洗浄技術を開発しました。

<参考>
1)振動について
ロイヤル・インスティテューション 133回「振動」より
機械工学の重要な一分野のほとんどすべてを、
ここに記述してみようと思っている
【著者】リチャード・ビジョップ 
【訳者】中山秀太郎  講談社(1981年 B-471)

2)流れとかたち
 すべてのかたちの進化は
 流れをよくするという「コンストラクタル法則」が支配している!
【著者】  Adrian Bejan   J. Peder Zane
【訳者】 柴田裕之 【解説者】 木村繁男  紀伊國屋書店 (2013年)

3)サイバネティクスはいかにしてうまれたか
【著者】 ノーバート・ウィナー 
【訳者】 鎮目恭夫  みすず書房(1956年)

上記を参考・ヒントにして
 超音波伝播現象における
 「非線形効果」を測定・利用する技術を
 流れをよくするという「コンストラクタル法則」で
 整理することで、超音波洗浄技術にまとめています。
 (詳細を見る

<超音波のダイナミック制御システム>

<超音波のダイナミック制御システム> 製品画像

<超音波のダイナミック制御システム>

超音波の伝搬状態をシステムとしてとらえ、解析と制御を行う

多くの超音波利用の目的は、
 対象物・対象液に伝搬する超音波の
 非線形現象の予測あるいは制御にあります。

しかし、多くの実施例で
 キャビテーションによる理論と
 実際の違いによる問題が多数指摘されています。

この様な事例に対して
 1)障害を除去するものは
   時系列で変化する超音波について、
   音圧データの統計的データ処理である
   <超音波伝搬状態の計測・解析技術>

 2)対象に関するデータの解析の結果に基づいて
   対象の音響特性を確認する
   <対象物の表面弾性波や
    対象液の音響流に関する音響特性を検出する技術>

 3)特性の確認により
   超音波のダイナミック制御の実現に進む
   <非線形現象をコントロールする技術
    複数の超音波に対するスイープ発振制御>

以上の方法により
 超音波を効率的な利用状態に改善し
 目的とする超音波の利用を実現した
 オリジナル超音波制御システムの実施例が多数あります (詳細を見る

非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術

非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術 製品画像

超音波システム研究所は、
 超音波の発振制御による、表面弾性波の伝搬状態について
 低周波と高周波の組み合わせによる
 共振現象・非線形現象をコントロールする技術を開発しました。
 新しい超音波伝搬部材(ステンレス線、チタン製ストロー・・)
 の利用により、目的に合わせた効率の高い超音波利用が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波の複雑な変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた低い周波数の伝搬状態を実現します。

特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
 効率の高い超音波制御
 (30W出力で、3000リットルの洗浄液に伝搬)を実現します。
 (詳細を見る

超音波プローブを利用した超音波制御システム

超音波プローブを利用した超音波制御システム 製品画像

超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。

超音波を利用した
 洗浄、改質、検査、・・・への新しい応用システムです。

低周波の振動・音との組み合わせ制御による応用も可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 応用システム技術として開発しました。

ポイントは
 表面弾性波の利用方法です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象(注2)として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

注2:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象


 (詳細を見る

(オーダーメード対応)メガヘルツの超音波発振制御プローブ

(オーダーメード対応)メガヘルツの超音波発振制御プローブ 製品画像

超音波システム研究所は、
超音波伝搬状態のコントロールに関して、
ファンクションジェネレータと組み合わせることで、
1-100MHzの超音波伝搬状態を利用可能にする
メガヘルツの超音波発振制御プローブを開発しました。

超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、3000リッターの水槽でも、
 数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 超音波素子表面の表面弾性波利用技術です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性 応答特性 ゆらぎの特性 相互作用による影響




 (詳細を見る

脱気ファインバブル発生液循環システムのコンサルティング

脱気ファインバブル発生液循環システムのコンサルティング 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム)を開発しました。

この技術を利用した
脱気マイクロバブル発生液循環システムの
コンサルティングを行っています。

複雑に変化する超音波の利用状態を、
 安定した状態で利用(制御)するために
 現場にある、具体的な水槽に対して
 脱気マイクロバブル発生液循環システムを追加セットする
 コンサルティングを行います。

1:原理の説明
2:洗浄機(装置)に合わせた具体的な提案
3:ノウハウ説明
4:確認方法、調整方法、メンテナンス方法の説明

ファインバブルとメガヘルツ超音波による非線形振動制御技術開発

この技術について
「超音波を利用した振動測定技術」としてコンサルティング対応しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

<超音波のダイナミックシステム> 2024--液循環の最適化--

<超音波のダイナミックシステム> 2024--液循環の最適化-- 製品画像

超音波システム研究所は、
超音波水槽内の液体に伝搬する
超音波の状態を測定・解析する技術を応用して、
水槽の構造・強度・製造条件・・・による影響と液循環の状態を
目的に合わせた超音波の伝搬状態に設定・制御するシステムを開発しました。

超音波水槽内の液循環をシステムとしてとらえ、解析と制御を行う
多くの超音波(水槽)利用の目的は、水槽内の液体の音圧変化の予測あるいは制御にあります。
しかし、多くの実施例で、 理論と実際の違いによる問題が多数指摘されています。

この様な事例に対して
1)障害を除去するものは
統計的データの解析方法の利用である
<超音波伝搬状態の計測・解析技術>

2)対象に関するデータの解析の結果に基づいて
対象の特性を確認する
<対象物の表面弾性波に関する音響特性を検出する技術>

3)特性の確認により制御の実現に進む
<非線形現象をコントロールする技術>

上記の方法により
超音波を効率的な利用状態に改善し
目的とする超音波の利用を実現した
オリジナルシステムの実施例が多数あります
 (詳細を見る

超音波を利用した、「ナノテクノロジー」の研究・開発装置

超音波を利用した、「ナノテクノロジー」の研究・開発装置 製品画像

--超音波の非線形現象を制御する技術による
 ナノレベルの攪拌・乳化・分散・粉砕技術--

超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用した
 効果的な攪拌(乳化・分散・粉砕)技術を開発しました。

この技術は
 表面検査による間接容器、超音波水槽、その他事項具・・の
 超音波伝搬特徴(解析結果)を利用(評価)して
 超音波(キャビテーション・音響流)を制御します。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)

注:「R」フリーな統計処理言語かつ環境
 autcor:自己相関の解析関数
 bispec:バイスペクトルの解析関数
 mulmar:インパルス応答の解析関数
 mulnos:パワー寄与率の解析関数


 (詳細を見る

取扱会社 超音波による、音響流(非線形現象)の「流れとかたち・コンストラクタル法則」

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2023. 6 超音波プローブの製造方法を開発 2023. 8 スペクトル系列を利用した、超音波制御技術を開発 2023. 8 スイープ発振とパルス発振の組み合わせ技術を開発 2023. 9 100MHz以上の超音波御技術開発 2023.10 メガヘルツ超音波めっき技術開発 2023.11 非線形現象の制御技術を開発 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発

超音波による、音響流(非線形現象)の「流れとかたち・コンストラクタル法則」へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例