超音波システム研究所 ロゴ超音波システム研究所

最終更新日:2024-07-01 16:34:29.0

  •  
  • カタログ発行日:2024/7/1

2槽式超音波洗浄機(超音波、28kHz、38kHz、72kHz)納入仕様書1.00

基本情報2槽式超音波洗浄機(超音波、28kHz、38kHz、72kHz)納入仕様書

組み合わせ:第1水槽<28・38kHz::洗浄> 第2水槽<38・72kHz::リンス>

1.概要
本装置は、超音波装置

2.機能
1)洗浄・攪拌対象物
名称:金属
寸法:MAX 490*500*200mm
重量:MAX 100kg
材質:ガラス、金属、セラミック・・
汚れ:加工油、微粒子、 等
       
2)処理単位
処理量(1日) :-
1タクト処理量 :-
1タクト処理時間:実験確認

3)制御 超音波・液循環システム(超音波と循環ポンプのタイマー制御)

4)保安装置  特別になし

5)使用条件(本装置の使用条件は下記の通りと致します)
 洗浄・攪拌液 : 水槽 市水(10-60℃)
 洗浄・攪拌液 : アルカリ性溶液、・・

6)使用液量
 水槽液量:約-L

3.洗浄・攪拌について 
洗浄・攪拌内容・・に関しては、これまでの洗浄実験に基づいた制御対応

4.洗浄工程について
工程1:洗浄
 超音波 28kHz 300W 38kHz 150W
工程2:リンス
 超音波 38kHz 150W 72kHz 300W


非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術

非線形現象の音圧測定解析に基づいた、超音波洗浄機の改良技術 製品画像

超音波システム研究所は、
 超音波の発振制御による、表面弾性波の伝搬状態について
 低周波と高周波の組み合わせによる
 共振現象・非線形現象をコントロールする技術を開発しました。
 新しい超音波伝搬部材(ステンレス線、チタン製ストロー・・)
 の利用により、目的に合わせた効率の高い超音波利用が可能になります。

超音波テスターの音圧データの測定解析により
 表面弾性波の複雑な変化を、
 利用目的に合わせて、コントロールするシステム技術です。

実用的には、
 複数(2種類)の超音波プローブによる
 複数(2種類)の発振(スイープ発振、パルス発振)が
 複雑な振動現象(オリジナル非線形共振現象)を発生させることで
 高い音圧で高い周波数の伝搬状態、あるいは、
 目的の固有振動数に合わせた低い周波数の伝搬状態を実現します。

特に、水槽やポンプ・・振動特性とメガヘルツ超音波の最適化により、
 効率の高い超音波制御
 (30W出力で、3000リットルの洗浄液に伝搬)を実現します。
 (詳細を見る

超音波洗浄機の「流れとかたち・コンストラクタル法則」

超音波洗浄機の「流れとかたち・コンストラクタル法則」 製品画像

超音波システム研究所は、
 流れとかたちに関する「コンストラクタル法則」を利用した、
 超音波洗浄技術を開発しました。

<参考>
1)振動について
ロイヤル・インスティテューション 133回「振動」より
機械工学の重要な一分野のほとんどすべてを、
ここに記述してみようと思っている
【著者】リチャード・ビジョップ 
【訳者】中山秀太郎  講談社(1981年 B-471)

2)流れとかたち
 すべてのかたちの進化は
 流れをよくするという「コンストラクタル法則」が支配している!
【著者】  Adrian Bejan   J. Peder Zane
【訳者】 柴田裕之 【解説者】 木村繁男  紀伊國屋書店 (2013年)

3)サイバネティクスはいかにしてうまれたか
【著者】 ノーバート・ウィナー 
【訳者】 鎮目恭夫  みすず書房(1956年)

上記を参考・ヒントにして
 超音波伝播現象における
 「非線形効果」を測定・利用する技術を
 流れをよくするという「コンストラクタル法則」で
 整理することで、超音波洗浄技術にまとめています。
 (詳細を見る

出張セミナー:超音波洗浄・ファインバブル等の実用技術

出張セミナー:超音波洗浄・ファインバブル等の実用技術 製品画像

<開催主旨>
これまでの洗浄に関するコンサルティング経験から
 洗浄に対する取り組みは洗浄原理の理解を深めること以上に
 新素材・新加工・製造技術の進歩により従来の経験や直観では
 対応できなくなっています。
基本的な洗浄を見直す機会として
 あるいは洗浄の基本を理解するセミナーとして
 物の表面を伝搬する超音波による振動を測定する
 簡易デモンストレーションを行いながら
 洗浄の複雑さと重要(ノウハウ)事項を説明したいと考えます。
特に、医療用、真空用、半導体用、自動車産業・・で洗浄が不十分だった
 パイプ、チューブ、ホース・・の内部洗浄について
 メガヘルツの超音波発振制御技術を利用した
 精密洗浄方法を説明します。

特に、このセミナーで、以下の項目を詳しく説明します
1)なぜ、ファインバブルが有効なのか?
2)ファインバブルをどのように発生するのか?
3)どのように超音波洗浄機で利用するのか?

■講演プログラム
1.洗浄の基礎知識
2.超音波を利用した表面観察・測定(デモンストレーション)
3.洗浄で使われる超音波
4.洗浄事例の説明
 (詳細を見る

ファインバブルによる非線形現象を利用した超音波洗浄機

ファインバブルによる非線形現象を利用した超音波洗浄機 製品画像

超音波システム研究所は、
 超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
 超音波加工、攪拌、化学反応・・にも利用可能な、
 マイクロバブルを利用した超音波洗浄機を開発しました。


推奨システム概要

1:超音波とマイクロバブルによる表面改質処理を行った
  2種類の超音波振動子(標準タイプ 38kHz,72kHz)

2:超音波とマイクロバブルによる表面改質処理を行った
  超音波専用水槽(標準タイプ 内側寸法:500*310*340mm)

3:脱気・マイクロバブル発生液循環システム

4:制御装置による、超音波出力と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム

*特徴

超音波専用水槽による効果的な装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です

洗浄・攪拌・表面改質・・・対象と目的により
2種類の超音波(振動子)を組み合わせて制御します

推奨タイプの組み合わせは
 38kHz、72kHzの状態です

20μm以下のファインバブルを安定して利用する技術
 (詳細を見る

超音波伝搬現象の分類(コンサルティング対応)

超音波伝搬現象の分類(コンサルティング対応) 製品画像

超音波システム研究所は、
 超音波伝搬状態の測定データを
 バイスペクトル解析することで、
 超音波振動が伝搬する現象に関する分類方法を開発しました。


今回開発した分類に関する方法は、
 超音波の伝搬状態に関する
 主要となる周波数(パワースペクトル)の
 ダイナミック特性(非線形現象の変化)により
 線形・非線形の共振効果を推定します。

これまでのデータ解析から
 効果的な利用方法を
 以下のような
 4つのタイプに分類することができました。

 1:線形型
 2:非線形型
 3:ミックス型
 4:変動型

 上記の各タイプに基づいた装置開発・制御設定・・・
 成功事例が多数あります。


この技術を
 コンサルティング対応として提供します

 (詳細を見る

超音波洗浄機のダイナミック液循環システム(コンサルティング対応)

超音波洗浄機のダイナミック液循環システム(コンサルティング対応) 製品画像

(超音波洗浄機の測定・解析に基づいた制御システムを開発)

超音波システム研究所は、
 超音波洗浄機の液体に伝搬する
 超音波洗浄機の状態を測定・解析する技術を応用して、
 水槽の構造・強度・製造条件・・・による影響と
 液循環の状態を
 目的に合わせた超音波洗浄機の状態に
 設定・制御する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性(注1)を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注2)により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。

注1:超音波システム研究所のオリジナル技術
   「音色」を考慮した「超音波発振制御」技術を利用しています

注2:洗浄機と洗浄液と空気の
  各境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない洗浄水槽でも対応可能です。

  ミクロ流の自己組織化について
  脱気・曝気・超音波・水槽表面の弾性波動・・・により
  音響流のコントロールが可能になりました。
 
 (詳細を見る

超音波洗浄機の改良技術(コンサルティング対応)

超音波洗浄機の改良技術(コンサルティング対応) 製品画像

現状の超音波洗浄機を改良する方法
(超音波水槽と液循環の最適化技術を開発)

超音波システム研究所は、
 超音波水槽の構造・強度・製造条件・・・による影響と
 水槽内の液体の循環方法を設定することで
 超音波の伝搬状態を制御する技術を開発しました。

この技術は、
 複雑な超音波振動のダイナミック特性を
 各種の関係性について解析・評価することで、
 循環ポンプの設定方法(注)により、
 キャビテーションと加速度の効果を
 目的に合わせて設定する技術です。

注:水槽と循環液と空気の
  境界の関係性に関する設定がノウハウです。
  オーバーフロー構造になっていない水槽でも対応可能です。

具体的な対応として
 現状の水槽による、超音波を減衰させる問題点を
 液循環ポンプの設定により
 対策するということができます。

特に精密な、ナノレベルの洗浄に対しては
 メガヘルツの超音波発振プローブによる発振制御の追加対応を
 提案実施対応します 

 (詳細を見る

ファインバブルによる音響流制御を利用した超音波洗浄機

ファインバブルによる音響流制御を利用した超音波洗浄機 製品画像

超音波システム研究所は、
 超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
 超音波加工、攪拌、化学反応・・にも利用可能な、
 ファインバブルを利用した超音波洗浄機を開発しました。

推奨システム概要

1:超音波とファインバブルによる表面改質処理を行った
  超音波振動子

2:超音波とファインバブルによる表面改質処理を行った
  超音波専用水槽

3:脱気・ファインバブル(マイクロバブル)発生液循環システム

4:制御装置による、超音波と液循環の最適化制御システム

5:超音波テスターによる、音圧管理システム


注意:水槽・振動子・治工具については、エージング処理により
   音響特性の調整対応が可能です

*特徴

超音波専用水槽による効果的な洗浄装置です

効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分となります
(通常の水槽を、超音波とファインバブルで表面改質対応します)

洗浄・攪拌・表面改質・・・対象と目的により
超音波(キャビテーション・音響流)を制御します


 (詳細を見る

超音波振動子の表面残留応力緩和処理技術(コンサルティング対応)

超音波振動子の表面残留応力緩和処理技術(コンサルティング対応) 製品画像

超音波システム研究所は、
超音波の伝搬状態に関する、測定・解析・評価技術を応用して、
超音波とファインバブルによる、
超音波振動子の表面残留応力を緩和する技術を公開しています。

この表面残留応力を緩和する技術により
 金属疲労・・に対する疲れ強さの改善を行うことが可能になりました。

その結果、超音波水槽をはじめ、様々な部品の効果が実証されています。

 (詳細を見る

オリジナル超音波モデルに基づいた制御システムの開発技術

オリジナル超音波モデルに基づいた制御システムの開発技術 製品画像

<論理モデルの作成について>(情報量基準を利用して)
1)各種の基礎技術に基づいて、対象に関する、
 D1=客観的知識(学術的論理に裏付けられた理論)
 D2=経験的知識(これまでの結果)
 D3=観測データ(現実の状態)
 からなる 「情報データ群 」、DS=(D1,D2,D3) を明確に認識し
 その組織的利用から複数のモデル案を作成する

2)統計的思考法を、
 情報データ群(DS)の構成と、
  それに基づくモデルの提案と検証の繰り返し
  によって情報獲得を実現する思考法と捉える

3)AIC の利用等の評価方法により、
 様々なモデルの比較を行い、最適なモデルを決定する

4)作成したモデルに基づいて、超音波装置・システムを構築する

5)時間と効率を考え、
 以下のように対応することを提案しています
5-1)「論理モデル作成事項」を考慮して
   「直感によるモデル」を作成し複数の人が検討する
5-2)実状のデータや新たな情報によりモデルを修正・検討する
5-3)検討メンバーが合意できるモデルにより
   装置やシステムの具体的打ち合わせに入る
 (詳細を見る

超音波洗浄機の設計・製造・開発コンサルティング

超音波洗浄機の設計・製造・開発コンサルティング 製品画像

超音波システム研究所は、
超音波の伝搬状態に関する計測・解析技術を応用して、
超音波専用水槽の設計・製造技術を開発しました。

今回開発した技術により
 水槽の最大長さ:3cm(液量5cc)~
       600cm(液量8000リットル)の
 超音波専用水槽に対して、
 超音波洗浄や表面改質・・・に適した
 超音波の利用効率、キャビテーションと音響流のダイナミック制御、
 対象物への伝搬状態・・・を利用目的に合わせて実現出来ます。

従来の水槽(あるいは振動子)設計や製造においては
 音響特性に対する考慮が十分でないために、
 振動の干渉・減衰による不均一・不安定な事象により
 超音波の寿命・水槽のトラブル・・・が起きやすい傾向があります。

この技術は、
 現状の水槽・振動子・・に対しても
 問題点(洗浄液の各種分布、水槽・振動子の設置方法)を検出し
 改善・改良を行うことができます。

ーー提供ノウハウーー
0)装置の設計・製造方法
1)超音波のONOFF制御
2)液循環のONOFF制御
3)最適化ノウハウの提供
4)メガヘルツ超音波の利用方法
 (詳細を見る

メガヘルツの超音波システム(洗浄、攪拌、加工、表面処理・・)

メガヘルツの超音波システム(洗浄、攪拌、加工、表面処理・・) 製品画像

超音波システム研究所は、
超音波機器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-700MHz以上の超音波伝搬状態制御を可能にする
超音波システム技術を開発しました。

超音波伝搬状態の測定・解析・評価・技術に基づいた、
 精密洗浄・加工・攪拌・溶接・めっき・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、1000リッターの水槽でも、
 数トンの対象物への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 治工具(弾性体:金属・ガラス・樹脂)の利用です、
 対象物の条件・・・により
 超音波の伝搬特性を確認することで、
 オリジナル非線形共振現象(注1)として
 対処することが重要です

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

 (詳細を見る

超音波洗浄機の改良(ファインバブル発生システム追加の出張対応)

超音波洗浄機の改良(ファインバブル発生システム追加の出張対応) 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム)を開発しました。

この技術を利用した
脱気ファインバブル発生液循環システム追加の出張対応を行っています。

複雑に変化する超音波の利用状態を、
 安定した状態で利用(制御)するために
 現場にある、具体的な水槽に対して
 脱気ファインバブル発生液循環システムを
 追加セット・音圧測定確認する
 出張サービスを行います。

<<脱気ファインバブル発生液循環技術の説明>>

適切な液循環とファインバブルの拡散性により
均一な洗浄液の状態が実現します

均一な液中を超音波が伝搬することで
安定した超音波の状態が発生します

この状態から
目的の超音波の効果(伝搬状態)を実現するために
液循環制御を行います
(水槽内全体に均一な音圧分布を実現して、
 超音波、液循環ポンプ、ファインバブル、・・の最適化を実現する
 運転制御が、個別の水槽に対するノウハウとなります)

 (詳細を見る

脱気マイクロバブル発生液循環システムのコンサルティング

脱気マイクロバブル発生液循環システムのコンサルティング 製品画像

超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
超音波の<解析・評価>方法(システム)を開発しました。

この技術を利用した
脱気マイクロバブル発生液循環システムの
コンサルティングを行っています。

複雑に変化する超音波の利用状態を、
 安定した状態で利用(制御)するために
 現場にある、具体的な水槽に対して
 脱気マイクロバブル発生液循環システムを追加セットする
 コンサルティングを行います。

1:原理の説明
2:洗浄機(装置)に合わせた具体的な提案
3:ノウハウ説明
4:確認方法、調整方法、メンテナンス方法の説明

ファインバブルとメガヘルツ超音波による非線形振動制御技術開発

この技術について
「超音波を利用した振動測定技術」としてコンサルティング対応しています。

超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
 (詳細を見る

超音波プローブを利用した超音波制御システム

超音波プローブを利用した超音波制御システム 製品画像

超音波システム研究所は、
オリジナル製品:超音波発振プローブ製造に関する、
音響特性の解析・評価技術を応用した、
メガヘルツの超音波発振制御システムを開発しました。

超音波を利用した
 洗浄、改質、検査、・・・への新しい応用システムです。

低周波の振動・音との組み合わせ制御による応用も可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 応用システム技術として開発しました。

ポイントは
 表面弾性波の利用方法です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象(注2)として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性
 応答特性
 ゆらぎの特性
 相互作用による影響

注2:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象


 (詳細を見る

超音波と表面弾性波(オリジナル超音波システムの開発技術)

超音波と表面弾性波(オリジナル超音波システムの開発技術) 製品画像

超音波システム研究所は、
超音波制御により表面弾性波を利用した、
応用技術を開発しました。

超音波と表面弾性波の組み合わせにより
 ダイナミックな超音波伝搬制御を実現します。

ポイントは
 表面弾性波による非線形現象を
 効率の高い状態で制御可能にする
 設定です。

上記の具体的な技術として
 水槽・治工具・・・と超音波の相互作用による
 非線形現象(バイスペクトル)を
 目的(洗浄、攪拌、応力緩和、検査・・)に合わせて制御する
 システム技術を開発しました。

超音波の伝搬状態の測定・解析技術を利用した結果、
 高調波の制御を実現していること
 非線形現象を調整できることを確認しています。

システムの音響特性を
 (測定・解析・評価)確認して対応することがノウハウです

 (詳細を見る

(オーダーメード対応)メガヘルツの超音波発振制御プローブ

(オーダーメード対応)メガヘルツの超音波発振制御プローブ 製品画像

超音波システム研究所は、
超音波伝搬状態のコントロールに関して、
ファンクションジェネレータと組み合わせることで、
1-100MHzの超音波伝搬状態を利用可能にする
メガヘルツの超音波発振制御プローブを開発しました。

超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい応用技術です。

各種材料の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、3000リッターの水槽でも、
 数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として開発しました。

ポイントは
 超音波素子表面の表面弾性波利用技術です、
 対象物の条件・・・により
 超音波の伝搬特性を確認(注1)することで、
 オリジナル非線形共振現象として
 対処することが重要です

注1:超音波の伝搬特性
 非線形特性 応答特性 ゆらぎの特性 相互作用による影響




 (詳細を見る

超音波の発振制御技術(コンサルティング対応)

超音波の発振制御技術(コンサルティング対応) 製品画像

超音波伝搬状態の測定・解析・評価技術に基づいた、
 オリジナル非線形共振現象(注1)の制御技術です。

精密洗浄・加工・攪拌・検査・表面処理・・・への新しい応用技術です。

注1:オリジナル非線形共振現象
 オリジナル発振制御により発生する高調波の発生を
 共振現象により高い振幅に実現させたことで起こる
 超音波振動の共振現象

各種材料の音響特性(表面弾性波)を効率よく利用するため、
 表面の残留応力分布の緩和処理が簡単に実現できます。

弾性波動に関する工学的(実験・技術)な視点と
 抽象代数学の超音波モデルにより
 非線形現象の応用方法として
 オリジナル発振制御方法(注2)を応用発展しました。

注2:オリジナル発振制御方法
 2種類の超音波発振を行います
 一つは、スイープ発振制御を行います
 もう一つは、パルス発振制御を行います
 詳細な設定は、目的・対象物・治工具・・
 システムとしての振動系から論理モデルに基づいて設定します
 (詳細を見る

音圧測定解析に基づいた、超音波のダイナミック制御技術を開発

音圧測定解析に基づいた、超音波のダイナミック制御技術を開発 製品画像

超音波システム研究所は、
2台のファンクションジェネレータを利用することで
 全く新しい超音波のダイナミック制御技術を開発しました。
 2種類の異なる波形による(スイープ)発振により、
 超音波の非線形現象(注)をコントロールする技術を実現しました。

注:
オリジナル発振制御により発生する(10次以上の)高調波の発生を
低周波の振動現象と共振することで
高い振幅の高調波の発生を実現させた
超音波振動の非線形(共振)現象

各種部材の超音波伝搬特性を目的に合わせて最適化することで
効率の高い超音波発振制御が可能になります。

超音波テスターの音圧データの測定解析により
表面弾性波のダイナミックな変化を、
利用目的に合わせて、コントロールするシステム技術です。

実用的には、
複数(2種類)の超音波プローブによる
複数(2種類)の発振(スイープ発振、パルス発振)が
複雑な振動現象(オリジナル非線形共振現象)を発生させることで
高い音圧で高い周波数の伝搬状態、あるいは、
目的の固有振動数に合わせた
低い周波数の高い音圧レベルの伝搬状態を実現します。
 (詳細を見る

超音波発振制御プローブのオーダーメード対応

超音波発振制御プローブのオーダーメード対応 製品画像

超音波システム研究所は、
500Hzから750MHz以上の超音波伝搬状態を制御可能にする
超音波プローブのオーダーメード対応します。

目的に合わせた、
 オリジナル超音波発振制御プローブを製造開発対応します。

超音波プローブ:概略仕様
 測定範囲 0.01Hz~200MHz
 発振範囲 0.5kHz~25MHz
 伝搬範囲 0.5kHz~750MHz以上(解析により確認評価)
 材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
 発振機器 例 ファンクションジェネレータ

<金属・樹脂・ガラス・・・の音響特性>を把握することで
 発振制御により、音圧レベル、周波数、ダイナミック特性について
 目的に合わせた伝搬状態を実現します

超音波伝搬状態の測定・解析・評価技術に基づいた、
 精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。

各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
 20W以下の超音波出力で、3000リッターの水槽でも、
 数トンの構造物、工作機械、・・への超音波刺激は制御可能です。

 (詳細を見る

取扱会社 2槽式超音波洗浄機(超音波、28kHz、38kHz、72kHz)納入仕様書

超音波システム研究所

2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2022.12 超音波の非線形現象を評価する技術を開発 2023. 1 共振現象と非線形現象の最適化技術を開発 2023. 2 超音波技術開発に関する西田幾多郎モデルを開発 2023. 6 超音波の非線形振動現象に基づいた最適化技術を開発 2023. 6 超音波プローブの製造方法を開発 2023. 8 スペクトル系列を利用した、超音波制御技術を開発 2023. 8 スイープ発振とパルス発振の組み合わせ技術を開発 2023. 9 100MHz以上の超音波御技術開発 2023.10 メガヘルツ超音波めっき技術開発 2023.11 非線形現象の制御技術を開発 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発

2槽式超音波洗浄機(超音波、28kHz、38kHz、72kHz)納入仕様書へのお問い合わせ

お問い合わせ内容をご記入ください。

至急度必須

ご要望必須


  • あと文字入力できます。

目的必須

添付資料

お問い合わせ内容

あと文字入力できます。

【ご利用上の注意】
お問い合わせフォームを利用した広告宣伝等の行為は利用規約により禁止しております。
はじめてイプロスをご利用の方 はじめてイプロスをご利用の方 すでに会員の方はこちら
イプロス会員(無料)になると、情報掲載の企業に直接お問い合わせすることができます。
メールアドレス

※お問い合わせをすると、以下の出展者へ会員情報(会社名、部署名、所在地、氏名、TEL、FAX、メールアドレス)が通知されること、また以下の出展者からの電子メール広告を受信することに同意したこととなります。

超音波システム研究所


成功事例