超音波システム研究所
最終更新日:2024-09-09 16:57:14.0
メガヘルツ超音波の利用技術ーーオリジナル超音波プローブによる発振制御ーー1.00
基本情報メガヘルツ超音波の利用技術ーーオリジナル超音波プローブによる発振制御ーー
--超音波の伝搬状態を測定・解析・評価する技術に基づいた発振制御--
超音波システム研究所は、
多変量自己回帰モデルによるフィードバック解析技術を応用した、
「超音波の伝搬状態を測定・解析・評価する技術」を利用して
超音波利用に関するコンサルティング対応を行っています。
超音波テスターを利用したこれまでの
計測・解析・結果(注)を時系列に整理することで
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認します。
注:非線形特性
(音響流のダイナミック特性、バイスペクトル・自己相関・・解析結果)
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
超音波(スイープ発振、パルス発振)システム-ノウハウ-
超音波システム研究所は、
オリジナル超音波プロ-ブの製造技術により
プローブの音響特性に基づいた、発振制御技術を開発しました。
表面弾性波の非線形振動現象をコントロールする技術に発展しています。
ポイントは、超音波素子表面の表面弾性波について
伝搬特性と利用目的に合わせた、超音波発振制御に関する
最適化制御方法(スイープ発振とパルス発振の組み合わせ条件)です。
そのために、
オリジナルプローブの超音波伝搬特性の動作確認
(音圧レベル、周波数範囲、非線形性、・・ダイナミック特性)による、
超音波伝搬状態に関するダイナミックな特性評価が重要です。
特に、超音波プローブ(あるいは素子)の送受信特性と
発振器(ファンクションジェネレーター)についての、
ダイナミックに変化する発振特性の測定・解析・評価が必要です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
(詳細を見る)
オリジナル超音波プローブによる、超音波発振システム(20MHz)
超音波システム研究所は、
メガヘルツの超音波の発振制御が容易にできる
「発振システム(20MHz)」を製造販売しています。
システム概要(超音波発振システム(20MHz))
内容(20MHzタイプ)
超音波発振プローブ 2本
ファンクションジェネレータ 1式
操作説明書 1式(USBメモリー)
特徴(20MHzタイプ)
*超音波発振周波数
仕様 20kHz から 25MHz(あるいは24MHz)
*出力範囲 5mVp-p~20Vp-p
*サンプリングレート:200MSa/s(あるいは250MSa/s)
市販のファンクションジェネレータを利用したシステムです
目的に応じたファンクションジェネレータをセットにして
見積価格を提案します
標準参考例
発振システム20MHz 8万円~
2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発
2024.10 メガヘルツ超音波を利用した「振動技術」を開発
2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発
(詳細を見る)
メガヘルツの超音波発振(スイープ発振、パルス発振)システム
超音波システム研究所は、
超音波の発振制御技術による
表面弾性波の非線形振動現象をコントロールする技術を開発しました。
各種対象(水槽、振動子、プローブ、治具、対象物・・・)について
基本的な超音波の音響特性(応答特性、伝搬特性)を確認することで、
利用目的に合わせた、超音波伝搬状態を、発振制御により実現します。
2種類以上の非線形共振型超音波発振制御プローブによる、
スイープ発振、パルス発振の発振条件の設定(注)により
高い音圧レベルの共振現象と、
高調波の発生現象(10次以上の非線形現象)による、
900MHz以上の高周波伝搬状態を、ダイナミック制御します。
注:精密洗浄事例
スイープ発振 700kHz~20MHz 15W
パルス発振 13MHz 8W
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」統計処理言語
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
(詳細を見る)
メガヘルツの超音波システム(洗浄、攪拌、加工、表面処理・・)
超音波システム研究所は、
超音波機器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-700MHz以上の超音波伝搬状態制御を可能にする
超音波システム技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・溶接・めっき・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
数トンの対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
(詳細を見る)
超音波の非線形発振制御技術 ――スイープ発振ノウハウ――
超音波システム研究所は、
表面弾性波の非線形振動現象を利用した
新しい超音波の非線形スイープ発振制御技術を開発しました。
複雑な振動状態について、
1)線形現象と非線形現象
2)相互作用と各種部材の音響特性
3)音と超音波と表面弾性波
4)低周波と高周波(高調波と低調波)
5)発振波形と出力バランス
6)発振制御と共振現象
・・・
上記について
音圧測定データに基づいた
統計数理モデルにより
表面弾性波の新しい評価方法で最適化します。
超音波洗浄、加工、攪拌、・・・表面検査、・・ナノテクノロジー、・・
応用研究・・・ 様々な対応が可能です。
超音波の伝搬特性
1)振動モードの検出(自己相関の変化)
2)非線形現象の検出(バイスペクトルの変化)
3)応答特性の検出(インパルス応答特性の解析)
4)相互作用の検出(パワー寄与率の解析)
注:「R」フリーな統計処理言語かつ環境
autcor:自己相関の解析関数
bispec:バイスペクトルの解析関数
mulmar:インパルス応答の解析関数
(詳細を見る)
音圧測定解析に基づいた、超音波技術のコンサルティング
<<超音波の音圧データ解析・評価>>
1)時系列データに関して、
多変量自己回帰モデルによるフィードバック解析により
測定データの統計的な性質(超音波の安定性・変化)について
解析評価します
2)超音波発振による、発振部が発振による影響を
インパルス応答特性・自己相関の解析により
対象物の表面状態・・に関して
超音波振動現象の応答特性として解析評価します
3)発振と対象物(洗浄物、洗浄液、水槽・・)の相互作用を
パワー寄与率の解析により評価します
4)超音波の利用(洗浄・加工・攪拌・・)に関して
超音波効果の主要因である対象物(表面弾性波の伝搬)
あるいは対象液に伝搬する超音波の
非線形(バイスペクトル解析結果)現象により
超音波のダイナミック特性を解析評価します
この解析方法は、
複雑な超音波振動のダイナミック特性を
時系列データの解析手法により、
超音波の測定データに適応させる
これまでの経験と実績に基づいて実現しています。
超音波の伝搬特性
1)振動モードの検出
2)非線形現象の検出
3)応答特性の検出
4)相互作用の検出
(詳細を見る)
音圧データ解析に基づいた、超音波システム開発技術
超音波システム研究所は、
多変量自己回帰モデルによるフィードバック解析技術を応用した、
「超音波の伝搬状態を測定・解析・評価する技術」を利用して
超音波利用に関するコンサルティング対応を行っています。
超音波テスターを利用したこれまでの
計測・解析・結果(注)を時系列に整理することで
目的に適した超音波の状態を示す
新しい評価基準(パラメータ)を設定・確認します。
注:
非線形特性(音響流のダイナミック特性)
応答特性
ゆらぎの特性
相互作用による影響
統計数理の考え方を参考に
対象物の音響特性・表面弾性波を考慮した
オリジナル測定・解析手法を開発することで
振動現象に関する、詳細な各種効果の関係性について
新しい理解を深めています。
その結果、
超音波の伝搬状態と対象物の表面について
新しい非線形パラメータが大変有効である事例による
実績が増えています。
特に、洗浄・加工・表面処理効果に関する評価事例・・
良好な確認に基づいた、制御・改善・・・が実現します。
(詳細を見る)
超音波とファインバブルによる非線形現象を利用した超音波洗浄機
超音波システム研究所は、
超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
超音波加工、攪拌、化学反応・・にも利用可能な、
マイクロバブルを利用した超音波洗浄機を開発しました。
推奨システム概要
1:超音波とマイクロバブルによる表面改質処理を行った
2種類の超音波振動子(標準タイプ 38kHz,72kHz)
2:超音波とマイクロバブルによる表面改質処理を行った
超音波専用水槽(標準タイプ 内側寸法:500*310*340mm)
3:脱気・マイクロバブル発生液循環システム
4:制御装置による、超音波出力と液循環の最適化制御システム
5:超音波テスターによる、音圧管理システム
*特徴
超音波専用水槽による効果的な装置です
効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分です
洗浄・攪拌・表面改質・・・対象と目的により
2種類の超音波(振動子)を組み合わせて制御します
推奨タイプの組み合わせは
38kHz、72kHzの状態です
20μm以下のファインバブルを安定して利用する技術
(詳細を見る)
超音波洗浄機の改良技術(コンサルティング対応)
現状の超音波洗浄機を改良する方法
(超音波水槽と液循環の最適化技術を開発)
超音波システム研究所は、
超音波水槽の構造・強度・製造条件・・・による影響と
水槽内の液体の循環方法を設定することで
超音波の伝搬状態を制御する技術を開発しました。
この技術は、
複雑な超音波振動のダイナミック特性を
各種の関係性について解析・評価することで、
循環ポンプの設定方法(注)により、
キャビテーションと加速度の効果を
目的に合わせて設定する技術です。
注:水槽と循環液と空気の
境界の関係性に関する設定がノウハウです。
オーバーフロー構造になっていない水槽でも対応可能です。
具体的な対応として
現状の水槽による、超音波を減衰させる問題点を
液循環ポンプの設定により
対策するということができます。
特に精密な、ナノレベルの洗浄に対しては
メガヘルツの超音波発振プローブによる発振制御の追加対応を
提案実施対応します
(詳細を見る)
20MHz以下の発振による、900MHz以上の超音波伝搬制御技術
900MHz以上の超音波伝搬状態を利用可能にする技術を開発
(オリジナル超音波プローブによる、スイープ発振制御技術)
超音波システム研究所は、
*超音波伝搬状態の測定技術(オリジナル製品:超音波テスター)
*超音波伝搬状態の解析技術(時系列データの非線形解析システム)
*超音波伝搬状態の最適化技術(低周波振動と超音波の最適化処理)
*メガヘルツの超音波発振プローブの製造技術・発振制御技術
*ファインバブルと超音波による表面改質処理技術
・・・・
上記の技術を応用して
900MHz以上の超音波伝搬状態を利用可能にする
超音波の、非線形発振制御技術を開発しました。
注:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動(高調波10次以上)の共振現象
詳細に興味のある方は
超音波システム研究所にメールでお問い合わせください。
注:900MHz以上の伝搬状態は、音圧データの解析で行います
(詳細を見る)
(オーダーメード対応)メガヘルツの超音波発振制御プローブ
超音波システム研究所は、
超音波伝搬状態のコントロールに関して、
ファンクションジェネレータと組み合わせることで、
1-100MHzの超音波伝搬状態を利用可能にする
メガヘルツの超音波発振制御プローブを開発しました。
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、3000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件・・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象として
対処することが重要です
注1:超音波の伝搬特性
非線形特性 応答特性 ゆらぎの特性 相互作用による影響
(詳細を見る)
音圧測定解析に基づいた、超音波技術のコンサルティング対応
超音波システム研究所は、
超音波の非線形性に関する「測定・解析・制御」技術を応用した、
対象(弾性体、液体、気体)を伝搬する超音波振動の
ダイナミック特性を解析・評価する技術により、
洗浄物・治工具・超音波振動子・水槽・液循環・・に関する、
相互作用を<目的に合わせて最適化>する技術を開発しました。
超音波発振制御プローブ、超音波テスターを利用したこれまでの
発振・計測・解析により
各種の関係性・応答特性(注)を検討することで
超音波利用に関する出力の最適化技術として開発しました。
注:パワー寄与率、インパルス応答・・・
超音波の測定・解析に関して
サンプリング時間・・・の設定は
オリジナルのシミュレーション技術を利用しています
この技術を
超音波システム(洗浄、攪拌、加工・・・)の最適化技術として
コンサルティング対応しています。
(詳細を見る)
オンデマンド:超音波とファインバブルによる洗浄セミナー
プログラム
1).超音波・ファインバブル(マイクロバブル)に関する基礎知識と発生メカニズム
1.超音波の基礎
2.超音波振動の伝搬現象
3.ファインバブル(マイクロバブル)
2).超音波・ファインバブル(マイクロバブル)による洗浄方法とそのメリット
1.洗浄の基礎
2.物理作用・化学作用・相互作用
3.ファインバブルのメリット
3).超音波洗浄装置の考え方と導入・開発・改善ノウハウ
1.水槽・振動子の設置方法
2.マイクロバブル発生液循環システム
4).洗浄の具体的適用例と、
洗浄効果実績のある超音波洗浄装置の具体例
(詳細を見る)
メガヘルツ超音波を利用した、超音波洗浄機の改善コンサルティング
超音波システム研究所は、
メガヘルツ超音波発振制御を利用して、
1-900MHz以上の音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、5000リッターの水槽でも、
対象物への超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
ファインバブルによる音響流制御を利用した超音波洗浄機
超音波システム研究所は、
超音波の伝搬現象に関する測定・解析・評価技術に基づいて、
超音波加工、攪拌、化学反応・・にも利用可能な、
ファインバブルを利用した超音波洗浄機を開発しました。
推奨システム概要
1:超音波とファインバブルによる表面改質処理を行った
超音波振動子
2:超音波とファインバブルによる表面改質処理を行った
超音波専用水槽
3:脱気・ファインバブル(マイクロバブル)発生液循環システム
4:制御装置による、超音波と液循環の最適化制御システム
5:超音波テスターによる、音圧管理システム
注意:水槽・振動子・治工具については、エージング処理により
音響特性の調整対応が可能です
*特徴
超音波専用水槽による効果的な洗浄装置です
効率の高い超音波利用により
通常の水槽では強度・耐久性が不十分となります
(通常の水槽を、超音波とファインバブルで表面改質対応します)
洗浄・攪拌・表面改質・・・対象と目的により
超音波(キャビテーション・音響流)を制御します
(詳細を見る)
超音波発振制御プローブのオーダーメード対応
超音波システム研究所は、
900MHz以上の超音波伝搬状態を制御可能にする
超音波プローブのオーダーメード対応します。
目的に合わせた、
オリジナル超音波発振制御プローブを製造開発対応します。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 0.5kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(解析により確認評価)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<金属・樹脂・ガラス・・・の音響特性>を把握することで
発振制御により、音圧レベル、周波数、ダイナミック特性について
目的に合わせた伝搬状態を実現します
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への新しい基礎技術です。
各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、5000リッターの水槽でも、
数トンの構造物、工作機械、・・への超音波刺激は制御可能です。
(詳細を見る)
超音波を利用した「振動計測技術」をコンサルティング対応
超音波システム研究所(所在地:東京都八王子市)は、
オリジナル製品(超音波テスター)を利用した全く新しい、
<<振動計測技術>>を開発しました。
これまでに開発した、超音波の音圧測定解析技術について、
超音波の非線形現象に関する「測定・解析・制御」技術を応用します。
ものの表面を伝搬する超音波のダイナミック特性を
測定・解析・評価したデータの蓄積から、
低周波(0.1Hz)~高周波(200MHz)の振動状態を
<測定・解析・評価>できる技術を開発しました。
建物や道路の振動・騒音、機器・装置・壁・配管・机・手すり・・・
溶接時の金属が溶解する瞬間の振動、機械加工時の瞬間的な振動、・・
に関して、新しい振動現象に基づいた対策が可能になりました。
これは、新しい方法および技術です、
これまでの解析結果から
様々な応用事例が発展しています。
特に、標準測定時間として連続72時間のデータ採取が可能ですので
非常に低い周波数の振動や
不規則に変動する振動に対しても計測が可能です
(詳細を見る)
超音波伝搬現象の分類に基づいた、超音波プローブの製造技術
超音波システム研究所は、
超音波伝搬現象の分類に基づいた、
700MHz以上の超音波伝搬状態を制御可能にする
超音波プローブの製造技術を開発しました。
目的に合わせた、
オリジナル超音波発振制御プローブを製造開発が可能です。
ポイントは、超音波プローブの超音波伝搬特性の確認です。
超音波のダイナミックな変化に対する、応答特性が最も重要です。
この特性により、高調波の発生可能範囲が決定します。
現状では、以下の範囲に対して、製造対応可能となっています。
メガヘルツの超音波発振制御プローブ:概略仕様
測定範囲 0.01Hz~100MHz
発振範囲 0.1kHz~25MHz
(伝搬周波数範囲 1kHz~700MHz以上 解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン・・・
発振機器 例 ファンクションジェネレータ
<材質・形状・構造・・・による音響特性>を
把握(測定・解析・評価)することで、
目的に合わせた超音波の伝搬状態を実現します
この技術を、コンサルティング提供します
興味のある方はメールでお問い合わせください
(詳細を見る)
超音波の非線形現象制御による化学反応制御装置
超音波システム研究所は、
「超音波の非線形現象(音響流)を制御する技術」を利用して
「超音波による化学反応を制御する技術」を開発しました。
この技術は
容器の相互作用を測定確認することで
メガヘルツの超音波発振プローブによる超音波制御(注)により
目的に合わせた、超音波(キャビテーション・音響流)を制御します。
注:超音波制御
2種類の非線形共振型超音波発振プローブによる、
スイープ発振、パルス発振の発振条件の設定により
高い音圧の共振現象と、
高調波の発生現象(非線形現象)による、
30MHz以上の高周波伝搬状態を、ダイナミック制御します。
注:超音波制御「精密洗浄事例」
スイープ発振 70kHz~15MHz 15W
パルス発振 13MHz 8W
注:超音波制御「ナノレベルの攪拌事例」
スイープ発振 880kHz~22MHz 12W
パルス発振 14MHz 10W
特に、
音響流制御による、高調波のダイナミック特性により
ナノレベルの反応・対応が実現しています
(詳細を見る)
メガヘルツの超音波洗浄器(コンサルティング対応)
超音波システム研究所は、
超音波洗浄器に関して、
メガヘルツの超音波発振制御プローブを利用することで、
1-100MHzの音響流(超音波伝搬状態)制御を可能にする
超音波洗浄技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
治工具(弾性体:金属・ガラス・樹脂)の利用です、
対象物の条件・・・により
超音波の伝搬特性を確認することで、
オリジナル非線形共振現象(注1)として
対処することが重要です
注1:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案実施しています。
(詳細を見る)
スイープ発振とパルス発振による、超音波洗浄器の利用技術を開発
超音波システム研究所は、
超音波洗浄器に関して、
ファンクションジェネレータと超音波プローブを応用することで、
100MHz以上の超音波伝搬状態を利用可能にする
超音波発振制御技術を開発しました。
超音波伝搬状態の測定・解析・評価・技術に基づいた、
精密洗浄・加工・攪拌・・・への新しい応用技術です。
各種材料の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、1000リッターの水槽でも、
対象物へ100MHz以上の超音波刺激は制御可能です。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象の応用方法として開発しました。
ポイントは
対象物の超音波伝搬特性を確認することで、
オリジナル非線形共振現象の制御方法として
スイープ発振・パルス発振に関する、
システムの振動モードへの最適化として、
超音波発振制御プローブの発振条件を設定することが重要です。
様々な分野への利用が可能になると考え
各種コンサルティングにおいて提案しています。
(詳細を見る)
取扱会社 メガヘルツ超音波の利用技術ーーオリジナル超音波プローブによる発振制御ーー
2008. 8 超音波システム研究所 設立 ・・・ 2012. 1 超音波計測・解析システム製造販売開始 ・・・ 2024. 1 超音波振動の相互作用を測定解析評価する技術を開発 2024. 2 メガヘルツ超音波による表面処理技術を開発 2024. 4 共振現象と非線形現象の最適化技術を開発 2024. 5 音と超音波の組み合わせに関する最適化技術を開発 2024. 6 水槽と超音波と液循環に関する最適化・評価技術を開発 2024. 7 ポリイミドフィルムに鉄めっきを行った部材を利用した超音波プローブを開発 2024. 8 シャノンのジャグリング定理を応用した超音波制御方法を開発 2024. 9 ポータブル超音波洗浄器を利用した音響流制御技術を開発 2024.10 メガヘルツ超音波を利用した「振動技術」を開発 2024.10 ステンレス製真空二重構造容器を利用した超音波発振制御プローブを開発 2024.11 メガヘルツの流水式超音波(水中シャワー)技術を開発 2024.11 相互作用・応答特性を考慮した、超音波の音圧データ解析・評価技術を開発
メガヘルツ超音波の利用技術ーーオリジナル超音波プローブによる発振制御ーーへのお問い合わせ
お問い合わせ内容をご記入ください。